• Title/Summary/Keyword: Planning Graph Heuristics

Search Result 9, Processing Time 0.026 seconds

Graph-based Mixed Heuristics for Effective Planning (효율적인 계획생성을 위한 그래프 기반의 혼합 휴리스틱)

  • Park, Byungjoon;Kim, Wantae;Kim, Hyunsik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.3
    • /
    • pp.27-37
    • /
    • 2021
  • Highly informative heuristics in AI planning can help to a more efficient search a solutions. However, in general, to obtain informative heuristics from planning problem specifications requires a lot of computational effort. To address this problem, we propose a Partial Planning Graph(PPG) and Mixed Heuristics for solving planning problems more efficiently. The PPG is an improved graph to be applied to can find a partial heuristic value for each goal condition from the relaxed planning graph which is a means to get heuristics to solve planning problems. Mixed Heuristics using PPG requires size of each graph is relatively small and less computational effort as a partial plan generated for each goal condition compared to the existing planning graph. Mixed Heuristics using PPG can find partial interactions for each goal conditions in an effective way, then consider them in order to estimate the goal state heuristics. Therefore Mixed Heuristics can not only find interactions for each goal conditions more less computational effort, but also have high accuracy of heuristics than the existing max and additive heuristics. In this paper, we present the PPG and the algorithm for computing Mixed Heuristics, and then explain analysis to accuracy and the efficiency of the Mixed Heuristics.

Action Costs-based Heuristics for Optimal Planning (최적 계획생성을 위한 동작비용 기반의 휴리스틱)

  • Kim, Wantae;Kim, Hyunsik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.2
    • /
    • pp.27-34
    • /
    • 2017
  • Highly informative admissible heuristics can help to conduct more efficient search for optimal solutions. However, in general, more informative ones of heuristics from planning problems requires lots of computational effort. To address this problem, we propose an Delete Relaxation based Action Costs-based Planning Graph(ACPG) and Action Costs-based Heuristics for solving optimal planning problems more efficiently. The ACPG is an extended one to be applied to can find action costs between subgoal & goal conditions from the Relaxed Planning Graph(RPG) which is a common means to get heuristics for solving the planning problems, Action Costs-based Heuristics utilizing ACPG can find action costs difference between subgoal & goal conditions in an effective way, and then consider them to estimate the goal distance. In this paper, we present the heuristics algorithm to compute Action Costs-based Heuristics, and then explain experimental analysis to investigate the efficiency and the accuracy of the Action Costs-based Heuristics.

Effective Graph-Based Heuristics for Contingent Planning (조건부 계획수립을 위한 효과적인 그래프 기반의 휴리스틱)

  • Kim, Hyun-Sik;Kim, In-Cheol;Park, Young-Tack
    • The KIPS Transactions:PartB
    • /
    • v.18B no.1
    • /
    • pp.29-38
    • /
    • 2011
  • In order to derive domain-independent heuristics from the specification of a planning problem, it is required to relax the given problem and then solve the relaxed one. In this paper, we present a new planning graph, Merged Planning Graph(MPG), and GD heuristics for solving contingent planning problems with both uncertainty about the initial state and non-deterministic action effects. The merged planning graph is an extended one to be applied to the contingent planning problems from the relaxed planning graph, which is a common means to get effective heuristics for solving the classical planning problems. In order to get heuristics for solving the contingent planning problems with sensing actions and non-deterministic actions, the new graph utilizes additionally the effect-merge relaxations of these actions as well as the traditional delete relaxations. Proceeding parallel to the forward expansion of the merged planning graph, the computation of GD heuristic excludes the unnecessary redundant cost from estimating the minimal reachability cost to achieve the overall set of goals by analyzing interdependencies among goals or subgoals. Therefore, GD heuristics have the advantage that they usually require less computation time than the overlap heuristics, but are more informative than the max and the additive heuristics. In this paper, we explain the experimental analysis to show the accuracy and the search efficiency of the GD heuristics.

A Action-based Heuristics for Effective Planning (효율적인 계획 수립을 위한 동작-기반의 휴리스틱)

  • Kim, Hyun-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6290-6296
    • /
    • 2015
  • More informative ones of heuristics can help to conduct search more efficiently to obtain solution plan. However, in general, to derive highly informative heuristics from problem specifications requires lots of computational effort. To address this problem, we propose an State-Action based Planning Graph(SAPG) and Action-based heuristics for solving planning problems more efficiently. The SAPG is an extended one to be applied to can find interactions between subgoal & goal conditions from the relaxed planning graph which is a common means to get heuristics for solving the planning problems, Action-based heuristics utilizing SAPG graphs can find interactions between subgoal & goal conditions in an effective way, and then consider them to estimate the goal distance. Therefore Action-based heuristics have more information than the existing max and additive heuristics, also requires less computational effort than the existing overlap heuristics. In this pager. we present the algorithm to compute Action-based heuristics, and then explain empirical analysis to investigate the accuracy and the efficiency of the Action-based heuristics.

A Heuristic Search Planner Based on Component Services (컴포넌트 서비스 기반의 휴리스틱 탐색 계획기)

  • Kim, In-Cheol;Shin, Hang-Cheol
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.159-170
    • /
    • 2008
  • Nowadays, one of the important functionalities required from robot task planners is to generate plans to compose existing component services into a new service. In this paper, we introduce the design and implementation of a heuristic search planner, JPLAN, as a kernel module for component service composition. JPLAN uses a local search algorithm and planning graph heuristics. The local search algorithm, EHC+, is an extended version of the Enforced Hill-Climbing(EHC) which have shown high efficiency applied in state-space planners including FF. It requires some amount of additional local search, but it is expected to reduce overall amount of search to arrive at a goal state and get shorter plans. We also present some effective heuristic extraction methods which are necessarily needed for search on a large state-space. The heuristic extraction methods utilize planning graphs that have been first used for plan generation in Graphplan. We introduce some planning graph heuristics and then analyze their effects on plan generation through experiments.

A Comparative Study of Two-phase Heuristic Approaches to General Job Shop Scheduling Problem

  • Sun, Ji Ung
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.84-92
    • /
    • 2008
  • Scheduling is one of the most important issues in the planning and operation of production systems. This paper investigates a general job shop scheduling problem with reentrant work flows and sequence dependent setup times. The disjunctive graph representation is used to capture the interactions between machines in job shop. Based on this representation, four two-phase heuristic procedures are proposed to obtain near optimal solutions for this problem. The obtained solutions in the first phase are substantially improved by reversing the direction of some critical disjunctive arcs of the graph in the second phase. A comparative study is conducted to examine the performance of these proposed algorithms.

Planning Graph Heuristics for Forward State-Space Planning (전향 상태 공간 계획을 위한 계획 그래프 휴우리스틱)

  • Shin, Haeng-Chul;Kim, Man-Soo;Kim, In-Cheol
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.264-268
    • /
    • 2006
  • Graphplan 계획기에서 유래된 계획 그래프는 탐색에 매우 유용한 휴우리스틱을 손쉽게 얻을 수 있는 수단이다. 본 논문에서는 전향 상태 공간 계획방식을 정의한 뒤, 이 계획방식에 적용 가능한 계획 그래프 기반의 휴우리스틱 계산법들을 소개한다. 또 본 논문에서는 각 휴우리스틱 계산법이 갖는 특징을 정리하고 이들이 계획생성에 미치는 효과를 실험을 통해 비교, 분석해본다. 또한 이러한 전향 상태 공간 탐색 알고리즘과 휴우리스틱 계산법을 토대로 본 연구에서는 전향 상태 공간 계획기인 JPLAN을 구현하였고 그 구조에 대해 설명한다.

  • PDF

Extended Graph-Based Heuristics for Optimal Planning (최적 계획수립을 위한 확장된 그래프 기반의 휴리스틱)

  • Kim, Hyun-Sik;Kim, In-Cheol
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.294-297
    • /
    • 2011
  • 주어진 계획 문제로부터 휴리스틱을 이용하여 최적의 해 계획을 구하기 위해서는 허용 가능한 휴리스틱을 이용하여야 한다. 이러한 허용 가능한 휴리스틱은 실제 목표 도달거리보다 짧거나 같아야 하는데 휴리스틱 평가치가 실제 목표 도달거리에 가까울수록 계획생성을 위한 탐색 효율성이 높아진다. 하지만, 이러한 허용 가능한 휴리스틱 평가치를 구하는 과정은 매우 복잡하며 계산량이 많기 때문에 실제 계획 생성 과정에서 사용하기는 어렵다. 때문에 최대 휴리스틱과 같은 허용성을 만족하는 간단한 휴리스틱을 이용하고 있으며, 이로 인해 최적의 계획 결과를 얻을 수는 있지만, 탐색의 효율성이 떨어지는 결과를 가져오고 있다. 본 논문에서는 이러한 문제를 해결하기 위해서 기존의 계획그래프를 개선한 새로운 계획그래프인 확장된 계획그래프(EPG)를 이용한 MAX+ 휴리스틱 계산법을 소개한다. 확장된 계획그래프는 계획 문제 풀이를 위한 휴리스틱 계산에 이용되는 기존의 간략화된 계획그래프를 목표조건들 간의 상호작용을 확인 할 수 있도록 확장한 자료구조로써 목표조건들 간의 긍정적/부정적 상호작용을 찾는다. 이를 위해서 모든 목표조건들이 등장할 때까지 그래프를 전개하는 기본 전개 과정과 함께, 이 과정에서 발견된 동작과 목표 조건들과의 관계를 바탕으로 한 추가 전개 과정으로 이루어져 있다. 그리고 이 과정을 통해서 목표조건들간의 상호작용과 최단 거리를 구하게 된다. MAX+ 휴리스틱 계산에서는 이러한 목표조건들 간의 긍정적/부정적 상호작용의 존재 유무를 찾아내게 됨으로써 전체 목표 집합에 대한 보다 정확한 최소 도달거리에 대한 평가치를 찾게 된다. 따라서 MAX+ 휴리스틱은 기존의 최대 휴리스틱 보다 더 정보력 높은 휴리스틱을 구할 수 있는 장점이 있다. 본 논문에서는 MAX+ 휴리스틱의 계산 과정과 MAX+ 휴리스틱의 정확성과 이를 바탕으로 한 탐색 효율성을 확인하기 위한 실험적 분석에 대해 설명한다.