• Title/Summary/Keyword: Plankton

Search Result 237, Processing Time 0.024 seconds

Characteristic of Seasonal Dynamics of Planktonic Ciliates at Four Major Ports (Busan, Ulsan, Gwangyang and Incheon), Korea (한국의 4개 주요항만(부산, 울산, 광양, 인천)에 분포하는 섬모충 플랑크톤의 계절동태 특성)

  • Yang, Seung-Woo;Lee, Joon-Baek;Kim, Young-Ok
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.2
    • /
    • pp.217-231
    • /
    • 2018
  • Planktonic ciliates play an important role in the food web of marine ecosystem as well as a bio-indicator for invasive species from ballast waters or from changing flow of ocean currents due to climate changes. This study was carried out to find some evidences for introduction of such invasive species using ciliate plankton in four major international ports of Korea. We surveyed the seasonal species composition of planktonic ciliate to find out the evidence for the invasive species at Busan, Ulsan, Gwangyang and Incheon ports from February 2007 to November 2008. A total of 45 ciliates species, belonging to 15 genera, were identified during the study period: 33 species occurred at Busan, 31 at Gwangyang, 30 at Ulsan, 18 at Incheon. The abundance of naked ciliates ranged from 566 to $65,151cells\;L^{-1}$ and that of tintinnids 10 to $5,973cells\;L^{-1}$. Based on vector species of ciliates reported from Coos Bay in Oregon, 13 vector species of tinitinnids were identified as follows, Eutintinnus lususundae, E. tubulosus, Favella ehrenbergii, F. taraikaensis, Helicostomella subulata, Stenosemella nivalis, Tintinnopsis ampla, T. beroidea, T. cylindrica, T. directa, T. lohmanni, T. radix, T. rapa. All vector species occurred at Gwangyang port. Most tintinnids were mainly neritic species throughout the survey, while warm water species occurred only in short period at Busan, Ulsan and Gwangyang ports that might be affected seasonally by Tsushima warm current.

A Stduy on the Microflora of the Han River -Taxonomy of Phytoplankton for the South Han River and Estimation of Water Pollution Levels on the Central Area of the Han River- (한강의 Microflora에 관한 연구 (제6보) -남한강의 식물성플랑크톤에 대한 분류와 한강중심수역의 수질오탁판정-)

  • 정영호
    • Journal of Plant Biology
    • /
    • v.15 no.s
    • /
    • pp.1-32
    • /
    • 1972
  • In order to utilize for the prevention and preservation of the Han River from the environmental pollution the present studies were carried out to clarify the microflora and estimation of the water pollution levels of the Han River. In addition to the above regional and seasonal fluctuation of the phytoplankton was also examined. Samples of phytoplankton were collected from 6 stations in the South Han River during the period from December, 1971 to October, 1972. The results obtained during the present studies are as follows: 1. The phytoplankton samples collected from 6 stations, Yeoju, Hajapo-ri, Yangpyeong, Daruraegi, Giduwon and Paldang were identified and classified by Engler's classification system(1954). It resulted in 2 phylum, 2 classes, 7 orders, 10 families, 29 genera, 137 species, 1 sub-species, 49 varieties, 6 forma and 2 variety-forma. The total numbers of phytoplankton identified were 195 species, of which 7 families, 27 species, 26 varieties, 4 forma and 2 variety-forma are new to Korea, that of 54 species are first described in Korea. 2. In lower area of the Han River it is found 53 species from Paldang and in middle area it is found 114 species from Giduwon, 95 species from Daruraegi, 66 species from Yangpyeong, 71 species from Hajapori and 81 species from Yeoju. In standpoint of seasonal fluctuation of phytoplankton, the total numbers of the plankton is more abundant in summer than in winter season and it shows bimodal pattern. 3. As compared with previous data which obtained from 30 stations covering estuary to upper area, both South and North Han River, during the period from 1965-1972 it is shown that 10 species of the South Han River and 11 species of the North Han River are found throughout all seasons. Among the above species two are common in both area. In the other hand it is found that 9 species in spring season and 6 species in fall season in the South Han River and 10 species in spring, 23 species in summer, 4 species in fall and 15 species in winter season in the North Han River shows their seasonal fluctuation in this area. Among the seasonal occurrence of phytoplankton 10 species were consider to be indicator for the estimation of biological water pollution levels. 4. According to Fjerdingstad's water pollution level system (1963) the total numbers of 1, 230 species which have been collected from the Han River since 1965 includes 27 species of phytoplankton as indicator; 3 species of blue-green algae, 20 species of diatom, and 4 species of green-algae. 5. With 27 indicator species new estimation of water pollution level system was arranged for water pollution in the Han River. 6. The lower part of the central area of the Han River indicates mesosaprobic. In central area of the Han River shows mesosaprobic and oligosaprobic, but predominant in mesosaporobic. And it is indicated that mesosaprobic, oligosaprobic, and polysaprobic factors mixed up in the North Han River. Compare with their water pollution level in the South and North Han River, with author's new system, it is estimated that North Han River is more polluted than South Han River. 7. The reason why North Han River is more polluted suggested that the selfpurification action was limited by their circulation speed. The rapid speed of water in the North Han River is mainly caused by their topography and water-drainage from waterpower plant. In conclusion the central area of the Han River consist of mesosaprobe zone, as a part with oligosaprobe zone. But the presence of polysaprobe zone in the North Han River gives us many problems in future for the nationa development programme and natural conservation in this area.

  • PDF

Food Sources of the Ascidian Styela clava Cultured in Suspension in Jindong Bay of Korea as Determined by C and N Stable Isotopes (탄소 및 질소안정동위원소 조성에 의한 남해안 진동만 양식 미더덕의 먹이원 평가)

  • Moon, Changho;Park, Hyun Je;Yun, Sung Gyu;Kwak, Jung Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.4
    • /
    • pp.302-307
    • /
    • 2014
  • To examine the trophic ecology of the ascidian Styela clava in an aquaculture system of Korea, stable carbon and nitrogen isotopes were analyzed monthly in S. clava, coarse ($>20{\mu}m$, CPOM) and fine particulate organic matters ($0.7<<20{\mu}m$, FPOM). CPOM (means: $-18.5{\pm}1.2$‰, $9.3{\pm}0.7$‰) were significantly higher ${\delta}^{13}C$ and ${\delta}^{15}N$ values than those ($-20.5{\pm}1.5$‰, $8.4{\pm}0.5$‰) of FPOM. S. clava had mean ${\delta}^{13}C$ and ${\delta}^{15}N$ values of $-18.9({\pm}1.7)$‰ and $11.6({\pm}0.7)$‰, respectively. S. clava were more similar to seasonal variations in ${\delta}^{13}C$ and ${\delta}^{15}N$ values of FPOM than those of CPOM, suggesting that they rely largely on the FPOM as a dietary source. In addition, our results displayed that the relative importance between CPOM and FPOM as dietary source for the ascidians can be changed according to the availability of each component in ambient environment, probably reflecting their feeding plasticity due to non-selective feeding irrespective of particle size. Finally, our results suggest that dynamics of pico- and nano-size plankton (i.e., FPOM) as an available nutritional source to S. clava should be effectively assessed to maintain and manage their sustainable aquaculture production.

Sea Water Type Classification Around the Ieodo Ocean Research Station Based On Satellite Optical Spectrum (인공위성 광학 스펙트럼 기반 이어도 해양과학기지 주변 해수의 수형 분류)

  • Lee, Ji-Hyun;Park, Kyung-Ae;Park, Jae-Jin;Lee, Ki-Tack;Byun, Do-Seung;Jeong, Kwang-Yeong;Oh, Hyun-Ju
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.591-603
    • /
    • 2022
  • The color and optical properties of seawater are determined by the interaction between dissolved organic and inorganic substances and plankton contained in it. The Ieodo - Ocean Research Institute (I-ORS), located in the East China Sea, is affected by the low salinity of the Yangtze River in the west and the Tsushima Warm Current in the south. Thus, it is a suitable site for analyzing the fluctuations in circulation and optical properties around the Korean Peninsula. In this study, seawater surrounding the I-ORS was classified according to its optical characteristics using the satellite remote reflectance observed with Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua and National Aeronautics and Space Administration (NASA) bio-Optical Marine Algorithm Dataset (NOMAD) from January 2016 to December 2020. Additionally, the variation characteristics of optical water types (OWTs) from different seasons were presented. A total of 59,532 satellite match-up data (d ≤ 10 km) collected from seawater surrounding the I-ORS were classified into 23 types using the spectral angle mapper. The OWTs appearing in relatively clear waters surrounding the I-ORS were observed to be greater than 50% of the total. The maximum OWTs frequency in summer and winter was opposite according to season. In particular, the OWTs corresponding to optically clear seawater were primarily present in the summer. However, the same OWTs were lower than overall 1% rate in winter. Considering the OWTs fluctuations in the East China Sea, the I-ORS is inferred to be located in the transition zone of seawater. This study contributes in understanding the optical characteristics of seawater and improving the accuracy of satellite ocean color variables.

Relationship Between Seasonal Dynamics of Zooplankton Community and Diversity in Small Reservoir Focusing on Occurrence Pattern (출현 양상 기반 소형호 내 동물플랑크톤 군집의 계절 변동과 다양성 관계)

  • Geun-Hyeok Hong;Hye-ji Oh;Yerim Choi;Jun-Wan Kim;Beom-Myeong Choi;KwangHyeon Chang;Min-Ho Jang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.2
    • /
    • pp.172-186
    • /
    • 2023
  • Small ponds, which exhibit unstable succession pattern of plankton community, are less well studied than large lakes. Recently, the importance of small ponds for local biodiversity conservation has highlighted the necessity of understanding the dynamics of biological community. In the present study, we collected zooplankton from three small reservoirs with monthly basis and analyzed their seasonal dynamics. To understand the complicated zooplankton community dynamics of small reservoirs, we categorized zooplankton species into four groups (LALF Group, Low Abundance Low Frequency; LAHF Group, Low Abundance High Frequency; HALF Group, High Abundance Low Frequency; HAHF Group, High Abundance High Frequency) based on their occurrence pattern (abundance and frequency). We compared the seasonal pattern of each group, and estimated community diversity based on temporal beta diversity contribution of each group. The result revealed that there is a relationship between groups with the same abundance but different occurrence frequencies, and copepod nauplii are common important component for both abundance and frequency. On the other hand, species included with LALF Group throughout the study period are key in terms of monthly succession and diversity. LALF Group includes Anuraeopsis fissa, Hexarthra mira and Lecane luna. However, groups containing species that only occur at certain times of the year and dominate the waterbody, HALF Group, hindered to temporal diversity. The results of this study suggest that the species-specific occurrence pattern is one key trait of species determining its contribution to total annual biodiversity of given community.

진도의 담수산 물벼룩류와 요각류의 출현특성에 관한 생태학적 연구

  • Yoon, Seong-Myeong;Chang, Cheon-Young;Kim, Won
    • Animal Systematics, Evolution and Diversity
    • /
    • v.11 no.1
    • /
    • pp.39-64
    • /
    • 1995
  • A faunistic and ecological study on the occurrence of freshwater cladocerans and copepods was accomplished from Chindo, South Korea. Collections were made from total 35 stations, comprising the various freshwater habitats like reservoirs, streams, swamps, bogs, ricefields, ditch, pond, and spring during the periods of July 23-25, and November 1-3 in 1994. Twenty seven cladoceran species of 17 genera of 6 families in 2 orders, and 28 copepod species of 21 genera of 6 families in 3 orders were collected during this research period, of which Daphnia obtusa Kurz and Elaphoidella bidens (Schmeil) are newly recorded from Korea. In reservoirs, Diaphanosoma sp. and Thermocyclops taihokuensis were dominant in July, and then succeeded by Bosmina longirostris and Cyclops vicinus vicinus in November. Thermocyclops crassus co-occurred with 7: taihokuensis at both seasons, was frequent in November after T. taihokuensis precipitately decreased. In other stagnant waters, 7: taihokuensis and Moina weismanni were dominant at ponds in July and in November, respectively. At ricefields in July Moina macrocopa and T. taihokuensis were dominant, but in November M. macrocopa and Paracyclops fimbriatus were. At streams, cladocerans were relatively rare, but became more rich in November. The representative cladoceran species were Bosmina longirostris as a plankton, and Chydorus sphaericus as a epibenthic species. Concerning copepods, nearly all the stations of streams except a few ones adjacent to seashore showed the similiar species constitutions, of which E. serrulatus and M, pehpeiensis were most frequent and abundant. At a mountain streamlet and a spring, the occurrence of Alona sp., Attheyella byblis Chang and Kim, 1992 and A. tetraspinosa Chang, 1993 is quite interesting and deserved much attention in the taxonomical point of view. Seventeen major cladocerans and copepods from lentic habitats and 13 major cladocerans and copepods from lotic habitatats were clustered using average taxonomic distance and UPGMA to infer the co-occurrence relations among species. As for lentic habitats, two large phena were appeared at first. The one phenon consisted of Diaphanosoma sp. and T taihokuensis, and showed its predominancy over the various habitats and its dominancy was rapidly decreased in November. The other phenon frequently occurred rather in November, and subdivided into three subgroups. On the other hand, as for lotic habitats, 13 species were also grouped into 2 large phena. The first one comprised 4 species, which were dominant and highly frequent at nearly all the lotic habitats, and subdivided into three subgroups according to their seasonal fluctuation types. The second one was also subdivided into three phena, the first of which comprised only one species, Microcyclops varicans, and occurred at most of the stations along stream with steadiness through the research period; the second phenon, Chydorus sphaericus, occurred much frequently in November; the last phenon included a few heterogenous subgroups.

  • PDF

Studies on the Propagation of the Freshwater Prawn, Macrobrachium nipponense (De Haan) Reared in the Laboratory 2. Life History and Seedling Production (담수산 새우, Macrobrachium nipponense (De Haan)의 증${\cdot}$양식에 관한 생물학적 기초연구 2. 생활사 및 종묘생산에 관한 연구)

  • KWON Chin-Soo;LEE Bok-Kyu
    • Journal of Aquaculture
    • /
    • v.5 no.1
    • /
    • pp.29-67
    • /
    • 1992
  • Life cycle and seed production of the freshwater prawn, Macrobrachium nipponense, were studied and the results are as follows : 1. Larval development : Embryos hatched out as zoea larvae of 2.06 mm in mean body length. The larvae passed through 9 zoea stages in $15{\~}20$ days and then metamorphosed into postlarvae measuring 5.68 mm in mean body length. Each zoea stage can be identified based on the shapes of the first and second antennae, exo- and endopodites of the first and second pereiopods, telson and maxillae. 2. Environmental requirements of zoea larvae : Zoea larvae grew healthy when fed with Artemia nauplii. Metamorphosing rate was $65{\~}72{\%}$ at $26{\~}28\%$ and $7.85{\~}8.28\%_{\circ}Cl.$. The relationship between the zoeal period (Y in days) and water temperature (X in $^{\circ}C$) is expressed as Y=46.0900-0.9673X. Zoeas showed best survival in a water temperature range of $26{\~}32^{\circ}C$ (optimum temperature $28^{\circ}C$), at which the metamorphosing rate into postlarvae was $54{\~}72\%$ The zoeas survived more successfully in chlorinity range of $4.12{\~}14.08{\%_{\circ}}Cl.$, (optimum chlorinity $7.6{\~}11.6\;{\%_{\circ}}Cl.$.), at which the metamorphosing rate was $42{\~}76{\%}$. The whole zoeal stages tended to be longer in proportion as the chlorinity deviated from the optimum range and particularly toward high chlorinity. Zoeas at all stages could not tolerate in the freshwater. 3. Environmental requirements of postlarvae and juveniles : Postlarvae showed normal growth at water temperatures between $24{\~}32^{\circ}C$ (optimun temperature $26{\~}28^{\circ}$. The survival rate up to the juvenile stage was $41{\~}63{\%}$. Water temperatures below $24^{\circ}C$ and above $32^{\circ}$ resulted in lower growth, and postlarvae scarcely grew at below $17^{\circ}C$. Cannibalism tended to occur more frequently under optimum range of temperatures. The range of chlorinity for normal growth of postlarvae and juveniles was from 0.00 (freshwater) to $11.24{\%_{\circ}}Cl.$, at which the survival rate was $32{\~}35\%$. The postlarvae grew more successfully in low chlorinities, and the best growth was found at $0.00\~2.21{\%_{\circ}}Cl.$. The postlarvae and juveniles showed better growth in freshwater but did not survive in normal sea water. 4. Feeding effect of diet on zoea Ilarvae : Zoea larvae were successfully survived and metamorposed into postlarvae when fed commercial artificial plankton, rotifers, and Artemia nauplii in the aquaria. However, the zoea larvae that were fed Artemia nauplii and reared in Chlorella mixed green water showed better results. The rate of metamorphosis was $68\~{\%}75$. The larvae fed cow live powder, egg powder, and Chlorella alone did not survive. 5. Diets of postlarvae, juveniles and adults : Artemia nauplii and/or copepods were good food for postlarvae. Juveniles and adults were successfully fed fish or shellfish flesh, annelids, corn grain, pelleted feed along with viscera of domestic animals or fruits. 6. Growth of postlarvae, juveniles and adults : Under favorable conditions, postlarvae molted every five or six days and attained to the juvenile stage within two months and they reached 1.78 cm in body length and 0.17 g in body weight. The juveniles grew to 3.52 cm in body length and 1.07 g in body weight in about four months. Their sexes became determinable based on the appearance of male's rudimental processes (a secondary sex character) on the endopodites of second pereiopods of males. The males commonly reached sexual maturity in seven months after attaining the postlarvae stage and they grew to 5.65 cm in body length and 3.41 g in body weight. Whereas the females attained sexual maturity within six to seven months, when they measured 4.93 cm in body length and 2.43 g in body weight. Nine or ten months after hatching, the males grew $6.62{\~}7.14$ cm in body length and $6.68{\~}8.36$ g in body weight, while females became $5.58{\~}6.08$ cm and $4.04{\~}5.54$ g. 7. Stocking density : The maximum stocking density in aquaria for successful survival and growth was $60{\~}100$ individuals/$\ell$ for zoeas in 30-days rearing (survival rate to postlarvae, $73{\~}80{\%}$) ; $100{\~}300$ individuals/$m^2$ for postlarvae of 0.57 cm in body length (survival rate for 120 days, $78{\~}85{\%}$) ; $40{\~}60$ individuals/$m^2$ for juveniles of 2.72 cm in body length (survival rate for 120 days, $63{\~}90{\%}$) : $20{\~}40$ individuals/$m^2$ for young prawns of 5.2 cm in body length (survival rate for 120 days, $62\~90{\%}$) ; and $10\~30$ individuals/$m^2$ for adults of 6.1 cm in body length (survival rate for 60 days, $73\~100{\%}$). The stocking density of juveniles, youngs and adults could be increased up to twice by providing shelters.

  • PDF