• 제목/요약/키워드: Planets

검색결과 187건 처리시간 0.024초

Parameterizing the Perturbed Rotational Velocities of Planet-induced Gaps

  • Yun, Han Gyeol;Kim, Woong-Tae;Bae, Jaehan;Han, Cheongho
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.63.2-63.2
    • /
    • 2019
  • Recent submillimeter observations of ALMA reveal that many protoplanetary disks contain substructures like gaps or rings. The disk-planet interaction is believed to be the most likely gap formation scenario, and most previous numerical work attempted to constrain the planet mass using the density profiles of gas in the gaps. Since the dust and gas distributions likely differ from each other in protoplanetary disks, however, perturbed rotational velocities that directly probe the gas would give a more reliable estimate to the planet mass. In this work, we run two-dimensional hydrodynamic simulations to measure the amplitudes and widths of rotational velocity perturbations induced by planets with different mass. We present the parametric relations of the gap widths and depths as functions of the planet mass and disk properties. We also apply our relations to HD 163296 to infer the masses of embedded planets.

  • PDF

Do Inner Planets Modulate the Solar Wind Velocity at 1 AU from the Sun?

  • Kim, Jung-Hee;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권1호
    • /
    • pp.1-6
    • /
    • 2014
  • Quite recently, it has been suggested that the interaction of the solar wind with Mercury results in the variation in the solar wind velocity in the Earth's neighborhood during inferior conjunctions with Mercury. This suggestion has important implications both on the plasma physics of the interplanetary space and on the space weather forecast. In this study we have attempted to answer a question of whether the claim is properly tested. We confirm that there are indeed ups and downs in the profile of the solar wind velocity measured at the distance of 1 AU from the Sun. However, the characteristic attribute of the variation in the solar wind velocity during the inferior conjunctions with Mercury is found to be insensitive to the phase of the solar cycles, contrary to an earlier suggestion. We have found that the cases of the superior conjunctions with Mercury and of even randomly chosen data sets rather result in similar features. Cases of Venus are also examined, where it is found that the ups and downs with a period of ~ 10 to 15 days can be also seen. We conclude, therefore, that those variations in the solar wind velocity turn out to be a part of random fluctuations and have nothing to do with the relative position of inner planets. At least, one should conclude that the solar wind velocity is not a proper observable modulated by inner planets at the distance of 1 AU from the Sun in the Earth's neighborhood during inferior conjunctions.

태양계 행성의 고정확도 위치계산에 과한 연구(II) (SOFTWARE DEVELOPMENT OF HIGH-PRECISION EPHEMERIDES OF SOLAR SYSTEM (II))

  • 신종섭;안영숙;박필호;박은광;박종옥
    • Journal of Astronomy and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.78-89
    • /
    • 1995
  • 상대론올 포함한 행성의 운동방정식을 중심으로 9개의 행성과 달, 그리고 4개의 소행성을 포함한 태양계의 n체 문제를 다루었다. 이 기본방정식에 지구와 달의 figure potential과 지구의 solid tidal effect를 외력으로 하는 섭동방정식을 추가하였다. 지구의 orientation을 J2000.0을 기준으로 하는 세차와 장동에 관한 식을 채택하였고, 달의 orientation에 대해 서는 J2000.0을 기준으로 하는 달의 칭동 모델을 션택하고 Eckert의 행성섭동효과를 추가 하였다. 각각의 subroutine별로 테스트를 거쳐 이들을 결합하여‘SSEG (Solar System Ephemerides Generator)’ 라는 소프트웨어 package를 개발한 후, CRAY-2S 슈퍼컴퓨터를 사용하여 프로그램을 수행하였다. 기준 시각인 JD2440400.5를 기준으로 하여, 1일 간격으로 40,000일 (약 110년) 동안 각 행성의 위치 (태양중심 황도직교좌표값)를 계산한 후, 이 결과의 정확도를 검증하기 위하여 JPL의 DE200 자료와 우리의 결과를 비교하였다. 이 연구로부터 얻은 결과로서 행성들의 위치 성분에 대한 최대오차가 100년 동안 $\pm2\times10^{-8}AU(약\pm3km)$ 이하로 나타났다

  • PDF

CLOSE/WIDE DEGENERACY IN CENTRAL PERTURBATIONS OF PLANETARY LENSING

  • Kim, Do-Eon;Han, Cheong-Ho;Park, Byeong-Gon
    • 천문학회지
    • /
    • 제42권3호
    • /
    • pp.39-45
    • /
    • 2009
  • We investigate the degeneracy in the pattern of central microlensing perturbations of a pair of planetary systems where the planets are located from the primary with projected separations in units of the Einstein radius s and $s^{-1}$, respectively. From this, we confirm the fact that although alike, the patterns of central perturbations induced by a close (s < 1) planet and a wide (s > 1) planet are not identical and the degree of difference depends on the planet/primary mass ratio and the planet-primary separation. We find that the difference can be greater than 5% for planetary systems with lensing parameters located in the parameter space of (1/1.8 < |s| < 1.8, q > $5{\times}10^{-3}$), (1/1.3 < |s| < 1.3, q > $1{\times}10^{-3}$), and (1/1.2 < |s| < 1.2, q > $5{\times}10^{-4}$), where q represents the planet/primary mass ratio. Although this range occupies a small fraction of the entire parameter space of planetary systems, we predict that the chance of resolving the close/wide degeneracy would not be meager considering that the planet detection efficiency is higher for planets with resonant separations (s $\sim$ 1) and heavier masses. We also find that the differences between the perturbation patterns are basically caused by the effect of the planetary caustic. This explains the tendency of the perturbation difference where (1) the difference increases as the planet/primary mass ratio increases and the separation approaches the Einstein radius, (2) the region of major difference is confined within the region around the line connecting the central and the planetary caustics, and (3) a wide (close) planetary system has a more extended central perturbation region toward the (opposite) direction of the planet.

예비교사들의 지구과학 문제 해결 실패 요인: 달과 행성의 운동을 중심으로 (Reasons for Unsuccessful Earth Science Problem Solving of Pre-service Teachers: A Study on the Motions of the Moon and the Planets)

  • 명전옥
    • 한국지구과학회지
    • /
    • 제22권5호
    • /
    • pp.339-349
    • /
    • 2001
  • 이 연구의 목적은 예비교사들의 달과 행성 운동의 문제 해결 과정에 대한 연구를 통하여 문제 해결 실패 요인을 파악하고 달과 행성의 운동에 대한 효과적 교수전략을 탐색하는 것을 목적으로 한다. 연구 대상은 초등 예비 교사 40명과 중등 예비 교사 20명이었으며 이들은 지구과학의 천문 분야를 한 학기 수강하였다. 검사도구는 지필 검사와 면담이었다. 연구 결과 예비교사들의 문제 해결 정도는 낮았다. 초등 예비교사들의 문제 해결 정도는 중등 과학 예비교사에 비하여 더 낮았다. 문제 해결 실패 요인을 요약하면 다음과 같다. (1) 선행 지식의 부족 (2) 해결 원리에 의한 문제표상 실패 (3) 배운 지식의 다른 상황(행성)에의 일반화 실패 (4) 일상과 문제 해결 상황의 관점에 대한 변별 부족 (5) 인과적 이해 대신 사실적 지식 암기 학습. 이상의 달과 행성의 운동 문제 해결 실패 요인은 일반적 문제 해결 실패자가 가진 특징과 달과 행성의 운동 과제가 갖는 특징의 결합이라고 해석할 수 있다. 이 연구 결과를 바탕으로 달과 행성의 운동 과제의 특징을 고려하여 문제 해결 능력을 높이기 위한 몇 가지 교수 방안이 제시되었다.

  • PDF

MINERVA: SMALL PLANETS FROM SMALL TELESCOPES

  • WITTENMYER, ROBERT A.;JOHNSON, JOHN ASHER;WRIGHT, JASON;MCCRADY, NATE;SWIFT, JONATHAN;BOTTOM, MICHAEL;PLAVCHAN, PETER;RIDDLE, REED;MUIRHEAD, PHILIP S.;HERZIG, ERICH;MYLES, JUSTIN;BLAKE, CULLEN H.;EASTMAN, JASON;BEATTY, THOMAS G.;LIN, BRIAN;ZHAO, MING;GARDNER, PAUL;FALCO, EMILIO;CRISWELL, STEPHEN;NAVA, CHANTANELLE;ROBINSON, CONNOR;HEDRICK, RICHARD;IVARSEN, KEVIN;HJELSTROM, ANNIE;VERA, JON DE;SZENTGYORGYI, ANDREW
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.665-669
    • /
    • 2015
  • The Kepler mission has shown that small planets are extremely common. It is likely that nearly every star in the sky hosts at least one rocky planet. We just need to look hard enough-but this requires vast amounts of telescope time. MINERVA (MINiature Exoplanet Radial Velocity Array) is a dedicated exoplanet observatory with the primary goal of discovering rocky, Earth-like planets orbiting in the habitable zone of bright, nearby stars. The MINERVA team is a collaboration among UNSW Australia, Harvard-Smithsonian Center for Astrophysics, Penn State University, University of Montana, and the California Institute of Technology. The four-telescope MINERVA array will be sited at the F.L. Whipple Observatory on Mt Hopkins in Arizona, USA. Full science operations will begin in mid-2015 with all four telescopes and a stabilised spectrograph capable of high-precision Doppler velocity measurements. We will observe ~100 of the nearest, brightest, Sun-like stars every night for at least five years. Detailed simulations of the target list and survey strategy lead us to expect $15{\pm}4$ new low-mass planets.

FREE-FLOATING PLANETS, THE EINSTEIN DESERT, AND 'OUMUAMUA

  • Gould, Andrew;Jung, Youn Kil;Hwang, Kyu-Ha;Dong, Subo;Albrow, Michael D.;Chung, Sun-Ju;Han, Cheongho;Ryu, Yoon-Hyun;Shin, In-Gu;Shvartzvald, Yossi;Yang, Hongjing;Yee, Jennifer C.;Zang, Weicheng;Cha, Sang-Mok;Kim, Dong-Jin;Kim, Seung-Lee;Lee, Chung-Uk;Lee, Dong-Joo;Lee, Yongseok;Park, Byeong-Gon;Pogge, Richard W.
    • 천문학회지
    • /
    • 제55권5호
    • /
    • pp.173-194
    • /
    • 2022
  • We complete the survey for finite-source/point-lens (FSPL) giant-source events in 2016-2019 KMTNet microlensing data. The 30 FSPL events show a clear gap in Einstein radius, 9 𝜇as < 𝜃E < 26 𝜇as, which is consistent with the gap in Einstein timescales near tE ~ 0.5 days found by Mróz et al. (2017) in an independent sample of point-source/point-lens (PSPL) events. We demonstrate that the two surveys are consistent. We estimate that the 4 events below this gap are due to a power-law distribution of free-floating planet candidates (FFPs) dNFFP/d log M = (0.4 ± 0.2) (M/38 M)-p/star, with 0.9 ≲ p ≲ 1.2. There are substantially more FFPs than known bound planets, implying that the bound planet power-law index 𝛾 = 0.6 is likely shaped by the ejection process at least as much as by formation. The mass density per decade of FFPs in the Solar neighborhood is of the same order as that of 'Oumuamua-like objects. In particular, if we assume that 'Oumuamua is part of the same process that ejected the FFPs to very wide or unbound orbits, the power-law index is p = 0.89 ± 0.06. If the Solar System's endowment of Neptune-mass objects in Neptune-like orbits is typical, which is consistent with the results of Poleski et al. (2021), then these could account for a substantial fraction of the FFPs in the Neptune-mass range.

A NON-SPHERICAL MODEL FOR THE HOT OXYGEN CORONA OF MARS

  • KIM YONG HA;SON SUJEONG;YI YU;KIM JHOON
    • 천문학회지
    • /
    • 제34권1호
    • /
    • pp.25-29
    • /
    • 2001
  • We have constructed a non-spherical model for the hot oxygen corona of Mars by including the effects of planetary rotation and diurnal variation of the Martian ionosphere. Exospheric oxygen densities are calculated by integrating ensemble of ballistic and escaping oxygen atoms from the exobase over the entire planet. The hot oxygen atoms are produced by dissociative recombination of $O^+_2$, the major ion in the Martian ionosphere. The densities of hot oxygen atoms at the exobase are estimated from electron densities which have been measured to vary with solar zenith angle. Our model shows that the density difference of hot oxygen atoms between noon and terminator is about two orders of magnitude near the exobase, but reduces abruptly around altitudes of 2000 km due to lateral transport. The diurnal variation of hot oxygen densities remains significant up to the altitude of 10000 km. The diurnal variation of the hot oxygen corona should thus be considered when the upcoming Nozomi measurements are analyzed. The non-spherical model of the hot oxy-gen corona may contribute to building sophisticate solar wind interaction models and thus result in more accurate escaping rate of oxygens from Mars.

  • PDF

Subaru Strategy for 2020's

  • Arimoto, Nobuo
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.27.2-27.2
    • /
    • 2015
  • Strategic plan of Subaru science and operation will be introduced. Currently, Subaru has wide variety of instruments, conducts only classical observations, with less than 5 nights allocation for each proposal. Near future, Subaru will emphasize on surveys, introduce queue mode observations, reduce the number of instruments, and concentrate on large size programs. Large surveys are called Subaru Strategic Programs (SSPs). HSC-SSP is on-going (300 nights for 5 years), PFS-SSP will start at around 2020 (360 nights for 5 years), and IRD-SSP from 2016 (TBD). HSC science includes 1) cosmology with gravitational lensing, 2) lensing studies of galaxies and clusters, 3) photometric redshifts, 4) the Solar system, 5) the Milky Way and the Local Group, 6) AGN/quasars, 7) transients, 8) galaxies at low/high redshifts, and 9) clusters of galaxies. PFS science includes 1) cosmology, 2) galaxy & AGN, and 3) galactic archaeology. Subaru is planning the third pillar instrument, so called ULTIMATE-Subaru, which is the GLAO optical-NIR wide field camera & multi-IFU spectrograph for finding galaxies at ultra high redshift (z>10). Finally the strategy from Subaru to TMT will be presented. Subaru will conduct four major SSPs (HSC, PFS, IRD, ULTIMATE-Subaru) in coming decade to provide targets to TMT. HSC performs wide field surveys to reveal the distribution of dark matter in the Universe. IRD surveys Earth-like young planets to discover ~20 Earth-like habitable planets. PFS studies the expanding Universe to provide a few million emission line galaxies to TMT.

  • PDF