• Title/Summary/Keyword: Plane-strain

Search Result 1,001, Processing Time 0.026 seconds

Fully Plastic Analyses of Unequally Notched Specimens in Bending Moment (굽힘 하중이 작용하는 비대칭노치시편의 완전소성해석)

  • Oh Chang-Kyun;Park Jin-Moo;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.269-278
    • /
    • 2006
  • This paper proposes slip line fields for bending of unequally notched specimens in plane strain that have a sharp crack in one side and a sharp V-notch in the other side. Depending on the back angle, two slip line fields are proposed, from which the limit moment and crack tip stress fields are obtained as a function of the back angle. Excellent agreement between slip line field solutions with those from detailed finite element limit analysis based on non-hardening plasticity provides confidence in the proposed slip line fields. One interesting point is that, for the unequally notched specimen, the difference between the crack tip triaxial stress for tension and that for bending increases significantly with increasing the back angle. This suggests that such a specimen could be potentially useful to investigate the crack tip constraint effect on fracture toughness of materials. In this respect, the possibility of designing a new toughness testing specimen with varying crack tip constraint is discussed.

The Electronic Laser Interferometry and Laser Heating Method for Residual Stress Determination

  • Kim, Koung-Suk;Kang, Young-June;Rho, Kyung-Wan;Ryu, Weon-Jae
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.715-721
    • /
    • 2000
  • Residual stress is one of the causes which makes defects in engineering components and materials. These residual stresses can occur in many engineering structures and can sometimes lead to premature failures. There are commonly used methods by which residual stresses are currently measured. But these methods have a little damage and other problems; therefore, a new experimental technique has been devised to measure residual stress in materials with a combination of electronic laser interferometry, laser heating and finite element method. The electronic laser interferometer measures in-plane deformations while the laser heating and cooling provides for very localized stress relief. FEM is used for determining the heat temperature and other parameters. The residual stresses are determined by the amount of strain that is measured subsequent to the heat-up and cool-down of the region being interrogated. A simple model is presented to provide a description of the method. In this paper, the ambiguity problem for the fringe patterns has solved by a phase shifting method.

  • PDF

A Study on the Fracture Behavior of a Crack in Gas Pipelines Considering Constraint Effects (구속효과를 고려한 가스배관 결함의 파괴거동해석)

  • Shim, Do-Jun;Choi, Jae-Boong;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.1-6
    • /
    • 2000
  • FFP(Fitness For Purpose) type defect assessment methodologies based on ECA(Engineering Critical Analysis) have been established and are in use for the structural integrity evaluation of gas pipelines. ECA usually includes the fracture mechanics analysis, and it assumes that J-integral uniquely characterizes crack-tip stress-strain fields. However, it has been shown that it is not sufficient to characterize the crack-tip field under low levels of constraint with a single parameter. Since pipeline structures are made of ductile material, locally loaded in tension, cracks may experience low level of constraint, and therefore, J-dominance will be lost. For this reason, the level of constraint must be quantified to establish a precise assessment procedure for pipeline defects. The objective of this paper is to Investigate the fracture behavior of a crack in gas pipeline by quantifying the level of constraint. For this purpose, tensile tests and CTOD tests were performed at room temperature$(24^{\circ}C)$ and low temperature$(-40^{\circ}C)$ to obtain the material properties. J-Q analyses were performed for SENB and SENT specimens based on 2-D finite element analyses, in order to investigate the in-plane constraint effects on pipeline defects.

  • PDF

A Study on the Initiation and Growth Behaviors of Surface Crack in a Type 304 Stainless Steel at Room Temperature (SUS 304鋼 의 常溫下 表面피勞균열 의 發생.成長 擧動 에 관한 硏究)

  • 서창민;김규남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.3
    • /
    • pp.195-200
    • /
    • 1984
  • In-plane tension fatigue tests(R=0.1) were carried out to investigate the initiation and growth behaviors of very small surface fatigue cracks on smooth unnotched surfaces of type 304 stainless steel at room temperature. The present paper deals with the unification of two approaches to the analysis of fatigue: the one approach is based on fracture mechanics concept and the other on low-cycle fatigue concept. The results are;(1)Maximum crack length, 2 $a_{max}$, initiated at a very small surface scratch not exceeding 20 .mu.m which can exist on the surface after buffing. And the density of small surface crack is remarkably low compared to that of mild steel. (2) The growth rate, d(2a)/dN, of very small fatigue cracks can be represented by one straight line as a function of either stress intensity factor range, .DELTA. $K_{I}$ or cyclic total strain intensity factor range, .DELTA. $K_{\epsilon}$$_{I}$/, for various values of the nominal stress range.e.e.e.e.

Residual Stress Analysis of the Overlay Weld on the Dissimilar Metal Butt Weld (이종재이종재료 Butt 용접에 대한 Overlay 용접의 잔류응력해석)

  • Kim, Kang-Soo;Lee, Ho-Jin;Lee, Bong-Sang;Jung, In-Chul;Byeon, Jin-Gwi;Park, Kwang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.534-537
    • /
    • 2008
  • In recent years, the dissimilar metal, Alloy 82/182 welds used to connect stainless steel piping and low alloy steel or carbon steel components in nuclear reactor piping system have experienced cracking due to primary water stress corrosion(PWSCC). It is well known that one reason of the cracking is the residual stress by the weld. But, it is difficult to estimate exactly weld residual stress due to many parameters of welding. In this paper, the analysis of 3 FEM models made by ABAQUS Code is performed to estimate exactly the weld residual stress on the dissimilar metal weld. 3 FEM models are Butt model, Repair model and Overlay model and are the plane.strain 2D model. The thermal analysis and the stress analysis are performed on each model and the residual stresses on each model were calculated and compared respectively. Also, the specimen of Butt model was made and the residual stresses were measured by X-Ray method and Hole Drilling Technique. These results were compared with the FEM result of Butt model.

  • PDF

Application of ICP(Iterative Closest Point) Algorithm for Optimized Registration of Object Surface and Unfolding Surface in Ship-Hull Plate Forming (선박 외판 성형에서 목적 형상과 전개 평판의 최적 정합을 위한 ICP(Iterative Closest Point) 알고리즘 적용)

  • Lee, Jang-Hyun;Yoon, Jong-Sung;Ryu, Cheol-Ho;Lee, Hwang-Beom
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.2
    • /
    • pp.129-136
    • /
    • 2009
  • Generally, curved surfaces of ship hull are deformed by flame bending (line heating), multi-press forming, and die-less forming method. The forming methods generate the required in-plane/bending strain or displacement on the flat plate to make the curved surface. Multi-press forming imposes the forced displacements on the flat plate by controlling the position of each pressing points based upon the shape difference between the unfolded flat plate and the curved object shape. The flat plate has been obtained from the unfolding system that is independent of the ship CAD. Apparently, the curved surface and the unfolded-flat surface are expressed by different coordinate systems. Therefore, one of the issues is to find a registration of the unfolded surface and the curved shape for the purpose of minimum amount of forming works by comparing the two surfaces. This paper presents an efficient algorithm to get an optimized registration of two different surfaces in the multi-press forming of ship hull plate forming. The algorithm is based upon the ICP (Iterative Closest Point) algorithm. The algorithm consists of two iterative procedures including a transformation matrix and the closest points to minimize the distance between the unfolded surface and curved surfaces. Thereby the algorithm allows the minimized forming works in ship-hull forming.

A Study on the Development of Low Reynolds Number Second Moment Turbulence Model (저레이놀즈수 2차 모멘트 난류모형 개발에 관한 연구)

  • 김명호;최영돈;신종근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1596-1608
    • /
    • 1993
  • Low Reynolds number second moment turbulence model which be applicable to the fine gird near the wall region was developed. In this model, turbulence model coefficients in the pressure strain model of the Reynolds stress equation was expressed as functions of turbulence Reynolds number $R_{t}\equivk^{2}/(\nu\varepsilon)).$ In the derivation procedure of the present low Reynolds number algebraic stress model, Laufer's near wall experimental data on Reynolds stresses were curve fitted as functions of R$_{t}$ and the resulting simultaneous equations of the model coefficients were solved by using the boundary conditions at wall and high Reynolds number limiting conditions. Predicted Reynolds stresses and dissipation rate of turbulent kinetic energy etc. in the 2 dimensional parallel, plane channel flow and pipe flow were compared with the preditions obtained by employing the Launder-Shima model, standard algebraic stress model and several experimental data. Results show that all the Reynolds stresses and dissipation rate of turbulent kinetic energy predicted by the present low Reynolds number algebraic stress model agree better with the experimental data than those predicted by other algebraic stress models.

Shakedown Analysis of Shaft in Bearing-Shaft Assembly (베어링-축 조립체에서 축의 셰이크다운에 관한 연구)

  • Park, Heung-Geun;Park, Jin-Mu;O, Yun-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1740-1747
    • /
    • 2000
  • Under repeated rolling, initial plastic deformation introduces residual stresses which render the steady cyclic state purely elastic. This is called the process of shakedown. Many studies have been done about the shakedown in semi-infinite half space using calculated Hertizian pressure. In this paper shakedown processes in a shaft are studied by finite element analyses of a two dimensional(plane strain) model with elastic-linear-kinematic-hardening-plastic material subjected to repeated, frictionless rolling contact. Symmetric and non-symmetric pressure distributions are obtained using a simplified model of the bearing-shaft assembly. The rolling contact is simulated by repeatedly translating both pressure distributions along the surface of the shaft. By the influence of the non-symmetric pressure, larger residual radial tensile stress is generated in the immediate subsurface layer, which may make a crack propagate and, the subsurface undergoes a zigzag plastic deformation during the shakedown process, which may lead to a crack initiation.

Determination of Initial Billet Size using The Artificial Neural Networks and The Finite Element Method for a Forged Product (신경망과 유한요소법을 이용한 단조품의 초기 소재 형상 결정)

  • 김동진;고대철;김병민;최재찬
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.214-221
    • /
    • 1995
  • In the paper, we have proposed a new method to determine the initial billet for the forged products using a function approximation in the neural network. The architecture of neural network is a three-layer neural network and the back propagation algorithm is employed to train the network. By utilizing the ability of function approximation of a neural network, an optimal billet is determined by applying the nonlinear mathematical relationship between the aspect ratios in the initial billet and the final products. The amount of incomplete filling in the die is measured by the rigid-plastic finite element method. The neural network is trained with the initial billet aspect ratios and those of the unfilled volumes. After learning, the system is able to predict the filling regions which are exactly the same or slightly different to the results of finite element simulation. This new method is applied to find the optimal billet size for the plane strain rib-web product in cold forging. This would reduce the number of finite element simulation for determining the optimal billet size of forging product, further it is usefully adapted to physical modeling for the forging design.

  • PDF

Comparison of In-Plane Measurement of Phase-Shifting with Time-Average Method (위상이동법과 시간평균법의 면내변위 측정 비교)

  • Kim, Kyoung-Suk;Kim, Dong-Iel;Jung, Hyun-Chul;Kang, Ki-Soo;Lee, Chan-Woo;Yang, Seung-Pil;Jarng, Soon-Suck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.53-58
    • /
    • 1999
  • Even I the Electronic Speckle Pattern Interferometry(ESPI) method that measure the strain of object within wavelength of light is less visibility than Holographic Interferometry(HI) method, the merits of application, convenience and time-save have made the method practical in industry. However, the existing ESPI methods that are based on dual-exposure, real-time and time-average method have difficulties for accurate measurement, due to irregular intensity and shake of phase. Recently, in order to solve this problem, phase shifting method have been proposed. In this method, the path of reference light in interference is shifted to make improvement in distinction and precision. But this method includes too many noise, caused by the problem of relationship between object and phase. Therefore, a method to reduce noise muse be introduced. In this paper, least square fitting method is proposed. As results, the phase-map is influenced by precise phase shifting and current of notes and speckle pattern obtained by phase shifting method is improved on the existing method driven from time-average method.

  • PDF