• Title/Summary/Keyword: Plane strain test

Search Result 203, Processing Time 0.026 seconds

A plane strain punch stretching test for evaluating stamping formability (평면변형장출실험을 이용한 스탬핑 성형성 평가)

  • 김영석;남재복
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.121-129
    • /
    • 1993
  • Plane strain punch stretching test (PSST) was developed to evaluate stamping formability of sheet materials. In this test, the rectangular specimen of sheet material is uniformly stretched up to fracture by raising a specially designed punch to certainly assure plane strain stretching deformation along the longitudinal direction of the specimen. The stamping formability was evaluated by limit punch height(LPH) in plane strain punch stretching test compared to limit dome height(LDH) in hemispherical punch stretching test. LPH-value in PSST well ranks the stamping formability of various material and correlates with press performance. Moreover by using ultrasonic thickness gauge the plane strain intercept-limit plane strain(FLCo)-in forming limit curve can be accurately determined from thickness measurement around the fracture area. The FLCo derived from thickness measurement well correlates with the results from circle grid analysis for the deformed circle grid marked on the surface of the specimen.

  • PDF

The Effects of Tensile Properties on Plane Strain Stretchability of Automotive Steel Sheets (인장특성이 자동차용강판의 평면변형장출성에 미치는 영향)

  • 김영석;박기철;김선원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2676-2683
    • /
    • 1993
  • Plane strain punch stretching test(PSST) was performed for various automotive steel sheets. To clarify the effect of tensile properties on plane strain stretchability, the limiting punch height(LPH) values were obtained in plane strain punch stretching test and related to the tensile properties of the materials. The results show that the total elongation El and work hardening exponent n compared to other parameters obtained from tensile test well correlate with the LPH value. In comparision with the Erichsen test and LDH test the PSST can be statistically used as an alternative in assessing the stamping formability of automotive steel sheets with the advantages of good reproducibility and easy testing method.

Development of Plane Strain Punch Stretching Test (평면변형 장출실험기술의 개발)

  • 김영석;김기수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1132-1137
    • /
    • 1993
  • A simple simulative test was developed to evaluate stamping formability in plane strain stretching mode. The stamping formability was evaluated by limit punch height(LPH) in plane strain punch stretching test(PSST) compared to limit dome height(LDH) in hemispherical punch stretching test. PSST shows stable plane strain condition and good reproducibility with minimum scatter. Moreover LPH-value in PSST well ranks the stamping formability of various material and correlates with press performance.

Restrained Effect of End Plate on Plane Strain Test Evaluated by Digital Image Correlation Method (디지털 이미지 코릴레이션 기법으로 평가한 평면변형률 시험의 단부 구속 효과)

  • Jang, Eui-Ryong;Choo, Yoon-Sik;Lee, Won-Taeg;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.22-33
    • /
    • 2008
  • The plane strain test has been used widely in order to examine the stress-strain relation and failure behavior. Its advantages are more realistic simulation of deformation and failure behaviors of soils. Most plane strain tests have been carried out with restrained end plates due to difficulties in manufacturing the equipment with free end condition and also performing it. In this study, plane strain tests with/without bottom plate restraint were performed on Jumunjin-sand. The measurement of overall and local deformation was accomplished by digital image correlation technique as well as external LVDT. By applying digital image correlation method using two consecutive images captured through the transparent wall, local deformation behavior of various parts inside the specimen was estimated. From digital image analysis result, the restrained effect of end plate was examined about formation and development of shear band, and deformation mechanism of sand under plane strain condition.

  • PDF

Measurement of Material Deformation Using Laser Speckle (레이저 스페클을 이용한 재료 변형 측정)

  • 전문창;강기주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.688-694
    • /
    • 2002
  • As a tool for strain measurement to work with screw driven or hydraulic material test systems, in which mechanical vibration is inherent, SSDG(Speckle Strain/Displacement Gage), ESP(Electronic Speckle Photography) and its 3-dimension version SDSP are investigated for the theory and practical appliance. Through tension test of steel strips, their validity and shortcomings are examined. As the results, it has been shown that, although SSDG and ESP provide direct measurement of in-plane strain in one direction, they are so sensitive to the out-plane displacement. On the other hand, SDSP which is aided with DIC (Digital Image Correlation) technique to trace the movement of the speckles provides not only in-plane 2-dimensional displacement field, but also out-of-plane displacement simultaneously. However, because the DIC is time-consuming, not automated yet and it needs post-processing to evaluate strain from the displacement field, SDSP appears to be not adequate as a real time sensor.

  • PDF

P1ane Strain Strength of Fine Sands

  • Yoon, Yeo-Won;Van, Impe W.F
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.5-16
    • /
    • 1996
  • Based on many experimental results on fine silica sands, the strength relation between triaxial and plane strain tests is expressed as a function of both density and mean effective principal stress at failure. Stress ratio of mean normal stress to deviatoric stress at failure is a well defined function of shear angle of friction, This ratio decreases with increasing shear angle of friction. Intermediate principal stress is also expressed in terms of major and minor principal stresses and a relatively good agreement between theoretical and observed angles of failure plane in plane strain test is confirmed.

  • PDF

Evaluation of Displacement Measurement Technique Using Laser Speckle and Digital Image Correlation Method (레이저 스페클과 디지털 화상관련법을 이용한 변위 측정방법의 평가)

  • 강기주;이정현;전문창
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.47-54
    • /
    • 2003
  • As a tool for strain measurement to work with screw driven or hydraulic material test systems, in which mechanical vibration is inherent, SSDG (Speckle Strain/Displacement Gage), ESP (Electronic Speckle Photography) and its 3-dimension version SDSP are evaluated for the theory and practical appliance. Through tension test of steel strips, their validity and shortcomings are examined. As the results, it has been shown that, although SSDG and ESP provide direct measurement of in-plane strain in one direction, they are so sensitive to the out-plane displacement. On the other hand, SDSP which is aided with DIC (Digital Image Correlation) technique to trace the movement of the speckles provides not only in-plane 2-dimensional displacement field, but also out-of-plane displacement simultaneously. However, because the DIC is time-consuming, not automated yet and it needs post-processing to evaluate strain from the displacement field, SDSP appears to be not adequate as a real time sensor.

Improvement of Sensitivity to In-plane Strain/Deformation Measurement by Micro-ESPI Technique (마이크로 ESPI 기법에 의한 면내 변형 측정 민감도 향상)

  • Kim D.I.;Huh Y.H.;Kee C.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1442-1445
    • /
    • 2005
  • Several test methods, including micro strain/deformation measurement techniques, have been studied to more reliably measure the micro properties in micro/nano materials. Therefore, in this study, the continuous measurement of in-plane tensile strain in micro-sized specimens of thin film materials was introduced using the micro-ESPI technique. TiN and Au thin films 1 and $0.47\;\mu{m}$ thick, respectively, were deposited on the silicon wafer and fabricated into the micro-sized tensile specimens using the electromachining process. The micro-tensile loading system and micro-ESPI system were developed to measure the tensile strain during micro-tensile test. The micro-tensile stress-strain for these materials was determined using the algorithm for continuous strain measurement. Furthermore, algorithm for enhancing the sensitivity to measurement of in-plane tensile strain was suggested. According to the algorithm for enhancement of sensitivity, micro-tensile strain data between interfringe were calculated. It is shown that the algorithm for enhancement of the sensitivity suggested in this study makes the sensitivity to the in-plane tensile strain increase.

  • PDF

Hemi-spheroidal Punch Stretching Test for Evaluation Press Formability (프레스 가공성 평가를 위한 반타원체 펀치 장출 시험)

  • Lee, Seung-Yeol;Geum, Yeong-Tak
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.539-544
    • /
    • 1998
  • Hemi-spheroidal punch stretching test was developed to evaluate the press formability of sheet materials. In the plane strain stretching tests our specially designed hemi-spheroidal head punch were used. In the experiment the circular sheet blanks with parallel edge sides are uniformly stretched up to fracture by raising these punches to assure plane strain stretching deformation along the longitudinal direction of the specimens. The press formability was evaluated by limit punch height(LPH) and minor strain mea-surement around the fracture area. Compared with the hemi-spherical punch and the hemi-cylindrical one our hemi-spheroidal punch was more useful in the experimental reproduction and reliance for press formability test.

  • PDF

Stress-Strain Characteristics of Weathered Granite Soil in Plane Strain Test (평면변형시험을 이용한 화강풍화토의 응력-변형률 특성)

  • Kim, You-Seong;Lee, Jin-Kwang;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.37-46
    • /
    • 2014
  • Geotechnical structures have been analyzed and constructed in various geometry conditions to maintain their stability in accordance with the characteristics of construction design. Shear strengths are generally obtained from triaxial test to apply to design analysis. Geotechnical structures under strip loading, such as earth dam, embankment, and retaining wall, have the strain in a direction, and plane strain condition. Thus, an approximate shear strengths should be applied for stability analysis suitable to ground condition. When applying shear strengths obtained from triaxial tests for slope stability analysis, the evaluation of it may underestimate the factor of safety because the implementation is not suitable for geometry condition. The paper compares shear strengths obtained from triaxial test and plane strain test based on various relative densities using weathered granite soils. Additionally, yield stress is determined by maximum axial strain 15% in triaxial test because of continuous kinematic hardening, but plane strain test can determine a failure point in critical state to evaluate the shear strengths of soils at the second plastic hardening step. This study proposes to perform an appropriate test for many geotechnical problems with plane strain condition.