• Title/Summary/Keyword: Plane failure method

Search Result 196, Processing Time 0.02 seconds

A Comparative Study of Simplified Probabilistic Analysis Methods for Plane Failure of Rock Slope (암반사면의 평면파괴해석을 위한 간이 확률론적 해석 비교연구)

  • Kim, Youngmin
    • Tunnel and Underground Space
    • /
    • v.31 no.5
    • /
    • pp.360-373
    • /
    • 2021
  • Many sources of uncertainty exist in geotechnical analysis ranging from the material parameters to the sampling and testing techniques. The conventional deterministic stability analysis of a plane failure in rock slope produce a safety factor but not a probability of failure or reliability index. In the conventional slope stability analysis by evaluating the ground uncertainty as an overall safety factor, it is difficult to evaluate the stability of the realistic rock slope in detail. This paper reviews some established probabilistic analysis techniques, such as the MCS, FOSM, PEM, Taylor Series as applied to plane failure of rock slopes in detail. While the Monte - Carlo methods leads to the most accurate calculation of the probability of safety, this method is too time consuming. Therefore, the simplified probability methods could be alternatives to the MCS. In this study, using these simple probability methods, the failure probability estimation of a plane failure in rock slope is presented.

Anisotropic Version of Mohr-Coulomb Failure Criterion for Transversely Isotropic Rock (횡등방성 암석의 강도해석을 위한 이방성 Mohr-Coulomb 파괴조건식)

  • Lee, Youn-Kyou;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.174-180
    • /
    • 2011
  • An anisotropic version of Mohr-Coulomb failure criterion is proposed in order to provide a strength criterion for transversely isotropic rock. The concept of fabric tensor introduced by Pietruszczak & Mroz (2001) is employed to define the friction angle and cohesion as scalar functions of the fabric tensors. The anisotroy in these two strength parameters are calculated in association with the consideration of the relative rotation between the principal stress coordinate and the principal material triad. The critical plane on which the anisotropic function maximized is found by an optimization technique based on the Lagrange multiplier method. To demonstrate the performance of the anisotropic failure criterion, conventional triaxial tests on the samples having various inclinations of weakness plane are simulated and the resulting triaxial strength and dip angle of failure plane are discussed.

Study on the Semi-Analytical Ice Load Calculation Methods for the Ice-Breaking Simulation (쇄빙시뮬레이션을 위한 반해석적 빙하중 계산법 고찰)

  • Kim, Jeong-Hwan;Jang, Beom-Seon;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.353-364
    • /
    • 2020
  • This paper presents the semi-analytical ice load calculation methods that are useful to simulate the ice-breaking process. Since the semi-analytical methods rely on the previously developed closed form equations or numerical analysis results, the user's exact understanding for the equations must be supported in order to use the methods properly. In this study, various failure modes of ice such as local crushing, in-plane splitting failure, out-of-plane bending failure and radial or circumferential cracking with rotation of the broken ice floe are considered. Based on the presented methods, the fracture modes were evaluated according to the size and thickness of ice. In addition, time series analysis for the ice-breaking process was performed on several ice conditions and the results were analyzed.

Estimation of Mobilized Passive Earth Pressure Depending on Wall Movement in Sand (모래지반에서 벽체의 변위에 따른 수동측토압 산정)

  • Kim, Tae-O;Park, Lee-Keun;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.51-60
    • /
    • 2020
  • Estimation of passive earth pressure is an important factor in anchor block, temporary retaining wall and support block of raker that resist lateral earth pressure. In practice, due to ease of use, it is common to estimate the earth pressure using the theory of Coulomb and Rankine, which assumes the failure plane as a straight line. However, the passive failure plane generated by friction between the wall surface and the soil forms a complex failure plane: a curve near the wall and a flat plane near the ground surface. In addition, the limit displacement where passive earth pressure is generated is larger compared to where the active earth pressure is generated. Thus, it is essential to calculate the passive earth pressure that occurs at the allowable displacement range in order to apply the passive earth pressure to the design for structural stability reasons. This study analyzed the mobilized passive earth pressured to various displacement ranges within the passive limit displacement range using the semi-empirical method considering the complex failure plane.

Progressive failure of symmetric laminates under in-plane shear: Il-Negative shear

  • Singh, S.B.;Kumar, Ashwini;Iyengar, N.G.R.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.7
    • /
    • pp.757-772
    • /
    • 1998
  • The objective of the present work is to estimate the strength and failure characteristics of symmetric thin square laminates under negative shear load. Two progressive failure analyses, one using the Hashin criterion and the other using a Tensor polynomial criterion, are used in conjunction with the finite element method. First-order shear-deformation theory along with geometric nonlinearity in the von Karman sense has been incorporated in the finite element modeling. Failure loads, associated maximum transverse displacements, locations and modes of failure including the onset of delamination are discussed in detail; these are found to be quite different from those for the positive sheer load reported in Part I of this study (Singh et al. 1998).

Prediction of Strength for Transversely Isotopic Rock Based on Critical Plane Approach (임계면법을 이용한 횡등방성 암석의 강도 예측)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.119-127
    • /
    • 2007
  • Based on the critical plane approach, a methodology far predicting the anisotropic strength ot transversely isotropic rock is Proposed. It is assumed that the rock failure is governed by Hoek-Brown failure criterion. In order to establish an anisotropic failure function, Mohr envelope equivalent to the original Hoek-Brown criterion is used and the strength parameters m, s are expressed as scalar functions of orientation. The conjugate gradient method, which is one of the robust optimization techniques, is applied to the failure function for searching the orientation giving the maximum value of the anisotropic function. While most of the existing anisotropic strength models can be applied only when the stress condition is the same as that of conventional triaxial compression test, the proposed model can be applied to the general 3-dimensional stress conditions. Through the simulation of triaxial compression tests for transversely isotropic rock sample, the validity of the proposed method is investigated by comparing the predicted triaxial strengths and inclinations of failure plane.

Congestion Aware Fast Link Failure Recovery of SDN Network Based on Source Routing

  • Huang, Liaoruo;Shen, Qingguo;Shao, Wenjuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5200-5222
    • /
    • 2017
  • The separation of control plane and data plane in Software Defined Network (SDN) makes it flexible to control the network behavior, while also causes some inconveniences to the link failure recovery due to the delay between fail point and the controller. To avoid delay and packet loss, pre-defined backup paths are used to reroute the disrupted flows when failure occurs. However, it may introduce large overhead to build and maintain these backup paths and is hard to dynamically construct backup paths according to the network status so as to avoid congestion during rerouting process. In order to realize congestion aware fast link failure recovery, this paper proposes a novel method which installs multi backup paths for every link via source routing and per-hop-tags and spread flows into different paths at fail point to avoid congestion. We carry out experiments and simulations to evaluate the performance of the method and the results demonstrate that our method can achieve congestion aware fast link failure recovery in SDN with a very low overhead.

Restrained Effect of End Plate on Plane Strain Test Evaluated by Digital Image Correlation Method (디지털 이미지 코릴레이션 기법으로 평가한 평면변형률 시험의 단부 구속 효과)

  • Jang, Eui-Ryong;Choo, Yoon-Sik;Lee, Won-Taeg;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.22-33
    • /
    • 2008
  • The plane strain test has been used widely in order to examine the stress-strain relation and failure behavior. Its advantages are more realistic simulation of deformation and failure behaviors of soils. Most plane strain tests have been carried out with restrained end plates due to difficulties in manufacturing the equipment with free end condition and also performing it. In this study, plane strain tests with/without bottom plate restraint were performed on Jumunjin-sand. The measurement of overall and local deformation was accomplished by digital image correlation technique as well as external LVDT. By applying digital image correlation method using two consecutive images captured through the transparent wall, local deformation behavior of various parts inside the specimen was estimated. From digital image analysis result, the restrained effect of end plate was examined about formation and development of shear band, and deformation mechanism of sand under plane strain condition.

  • PDF

A Case Study on the Seismic Hazard Classification of Domestic Drinking Water Earthfill Dams Using Zero Seismic Failure Probability Curve (지진파괴확률 영곡선 활용 국내 식수전용 흙댐의 지진 위험도 분류 사례 연구)

  • Ha, Ik-soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.173-180
    • /
    • 2022
  • Most of the drinking water dams managed by the local governments in Korea are earthfill dams, and these dams have almost no geotechnical property information necessary for seismic performance evaluation. Nevertheless, in the rough planning stage for improving seismic safety for these dams, it is necessary to classify their relative seismic hazard against earthquakes and conduct an additional ground investigation. The zero seismic failure probability curve is a curve suggested in this study in which the probability of failure due to an earthquake becomes '0' regardless of the geotechnical properties of the earthfill dam. By examining the method and procedure for calculating failure probability due to an earthquake suggested in previous researches, the zero seismic failure probability curves for an earthquake in 1,000-year and 2,400-year return periods in Korea were presented in the form of a hyperbola on the plane of the dam height versus freeboard ratio (ratio of freeboard to dam height), respectively. The distribution characteristics of the dam height and the freeboard ratio of 81 Korean earthfill dams were presented. The two proposed zero seismic failure probability curves are shown on the plane of the dam height versus freeboard ratio, and the relative seismic hazard of 81 dams can be classified into three groups using these curves as boundaries. This study presented the method of classifying the relative seismic hazard and the classification result.

Failure Analysis of RC Cylindrical Structures using Volume-Control Method (체적제어법에 의한 철근 콘크리트 원통형 구조물의 파괴 해석)

  • 송하원;방정용;변근주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.195-202
    • /
    • 1999
  • In this Paper, a so-called volume-control method for nonlinear failure analysis of reinforced concrete cylindrical structures is proposed. The pressure node which defines uniform change of pressure on finite element is added into layered shell element utilizing in-plane constitutive models of reinforced concrete and layered formulation. With the pressure node formulation, one can control the change in volume enclosed by the cylindrical structures and determine the required change in pressure. An algorith of volume-control method is employed and failure analyses for RC cylindrical structures are carried out using proposed method.

  • PDF