• Title/Summary/Keyword: Plane failure method

Search Result 196, Processing Time 0.02 seconds

The Detection of the Internal Defect in the Glass Using Auto Focusing Method (자동 초점 기법을 이용한 유리 내부 결함 검출)

  • Jy, Yong-Woo;Jhang, Kyung-Young;Jung, Ji-Hwa;Kim, Suk-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1047-1054
    • /
    • 2004
  • Internal defects in the glass, like-as micro-voids, micro-cracks, or inclusions, easily cause the failure when the glass is exposed to the shock or the thermal variation. In order to produce the highly reliable glass product, the precision inspection of the defect in the glass is required. For this purpose, this paper proposes a machine vision technique based on the auto-focusing method, which searches the defect and measures the location under the fact that the edge image of defect must be the most clear when the focal plane of CCD camera is coincided with the defect. As for the search index, the gradient indicator is presented. The basic principles are verified through the simulations for the computer-generated defect images, where the affects of defect shape, gray level of background, and the brightness of the defect image are also analyzed. Finally, experimental results for actual glass specimens are shown to confirm the applicability of this method to the actual field.

Shear Strain Big-Bang of RC Membrane Panel Subjected to Shear (순수전단이 작용하는 RC막판넬의 전단변형률 증폭)

  • Jeong, Je Pyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.101-110
    • /
    • 2015
  • Recently, nine $1397{\times}1397{\times}178mm$ RC panels were tested under in-plane pure-shear monotonic loading condition using the Panel Element Tester by Hsu (1997, ACI). By combining the equilibrium, compatibility, and the softened stress-strain relationship of concrete in biaxial state, Modern Truss Model (MCFT, RA-STM) are capable of producing the nonlinear analysis of RC membrane panel through the complicated trial-and-error method with double loop. In this paper, an efficient algorithm with one loop is proposed for the refined Mohr compatibility Method based on the strut-tie failure criteria. This algorithm can be speedy calculated to analyze the shear history of RC membrane element using the results of Hsu test. The results indicate that the response of shear deformation energy at Big Bang of shear strain significantly influenced by the principal compressive stress-strain (crushing failure).

Quantitative impact response analysis of reinforced concrete beam using the Smoothed Particle Hydrodynamics (SPH) method

  • Mokhatar, S.N.;Sonoda, Y.;Kueh, A.B.H.;Jaini, Z.M.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.917-938
    • /
    • 2015
  • The nonlinear numerical analysis of the impact response of reinforced concrete/mortar beam incorporated with the updated Lagrangian method, namely the Smoothed Particle Hydrodynamics (SPH) is carried out in this study. The analysis includes the simulation of the effects of high mass low velocity impact load falling on beam structures. Three material models to describe the localized failure of structural elements are: (1) linear pressure-sensitive yield criteria (Drucker-Prager type) in the pre-peak regime for the concrete/mortar meanwhile, the shear strain energy criterion (Von Mises) is applied for the steel reinforcement (2) nonlinear hardening law by means of modified linear Drucker-Prager envelope by employing the plane cap surface to simulate the irreversible plastic behavior of concrete/mortar (3) implementation of linear and nonlinear softening in tension and compression regions, respectively, to express the complex behavior of concrete material during short time loading condition. Validation upon existing experimental test results is conducted, from which the impact behavior of concrete beams are best described using the SPH model adopting an average velocity and erosion algorithm, where instability in terms of numerical fragmentation is reduced considerably.

Nonlinear probabilistic shear panel analysis using advanced sampling techniques

  • Strauss, Alfred;Ju, Hyunjin;Belletti, Beatrice;Ramstorfer, Maximilian;Cosma, Mattia Pancrazio
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.179-193
    • /
    • 2022
  • The shear behaviour of reinforced concrete members has been studied over the past decades by various researchers, and it can be simulated by analysing shear panel elements which has been regarded as a basic element of reinforced concrete members subjected to in-plane biaxial stresses. Despite various experimental studies on shear panel element which have been conducted so far, there are still a lot of uncertainties related to what influencing factors govern the shear behaviour and affect failure mechanism in reinforced concrete members. To identify the uncertainties, a finite element analysis can be used, which enables to investigate the impact of specific variables such as the reinforcement ratio, the shear retention factor, and the material characteristics including aggregate interlock, tension stiffening, compressive softening, and shear behaviour at the crack surface. In this study, a non-linear probabilistic analysis was conducted on reinforced concrete panels using a finite element method optimized for reinforced concrete members and advanced sampling techniques so that probabilistic analysis can be performed effectively. Consequently, this study figures out what analysis methodology and input parameters have the most influence on shear behaviour of reinforced concrete panels.

Seismic fragility assessment of shored mechanically stabilized earth walls

  • Sheida Ilbagitaher;Hamid Alielahi
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.277-293
    • /
    • 2024
  • Shored Mechanically Stabilized Earth (SMSE) walls are types of soil retaining structures that increase soil stability under static and dynamic loads. The damage caused by an earthquake can be determined by evaluating the probabilistic seismic response of SMSE walls. This study aimed to assess the seismic performance of SMSE walls and provide fragility curves for evaluating failure levels. The generated fragility curves can help to improve the seismic performance of these walls through assessing and controlling variables like backfill surface settlement, lateral deformation of facing, and permanent relocation of the wall. A parametric study was performed based on a non-linear elastoplastic constitutive model known as the hardening soil model with small-strain stiffness, HSsmall. The analyses were conducted using PLAXIS 2D, a Finite Element Method (FEM) program, under plane-strain conditions to study the effect of the number of geogrid layers and the axial stiffness of geogrids on the performance of SMSE walls. In this study, three areas of damage (minor, moderate, and severe) were observed and, in all cases, the wall has not completely entered the stage of destruction. For the base model (Model A), at the highest ground acceleration coefficient (1 g), in the moderate damage state, the fragility probability was 76%. These values were 62%, and 54%, respectively, by increasing the number of geogrids (Model B) and increasing the geogrid stiffness (Model C). Meanwhile, the fragility values were 99%, 98%, and 97%, respectively in the case of minor damage. Notably, the probability of complete destruction was zero percent in all models.

Comparative Study on Seismic Performance of Masonry Wall Strengthened by FRP Sheet or Steel-Bar Truss System (FRP 시트 및 강봉 트러스 시스템으로 보강된 조적벽의 내진성능 비교 연구)

  • Lee, Hye-Ji;Kim, Sanghee;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.1-9
    • /
    • 2022
  • In this study, the in-plane and out-of-plane seismic performance of the masonry wall strengthened using the steel bar truss system proposed by Hwang et al. (2021a, 2021b) or using FRP sheets were compared and evaluated. The maximum strength of the masonry wall reinforced with FRP sheets for the in-plane and out-of-plane loading was 71% and 85%, respectively, of that of the non-reinforced masonry wall. Meanwhile, the maximum strength of the masonry wall reinforced with the steel bar truss system was approximately 1.8 times higher than that of the non-reinforced masonry wall. Compared with the FRP sheet method, the steel bar truss system was excellent at improving the maximum load capacity, rigidity, and energy dissipation capacity. However, in the case of a masonry wall reinforced with FRP sheets, the masonry wall was overstrengthened with the FRP sheets covering the entire masonry wall, and it is considered that the overstrengthened specimen experienced sliding failure, resulting in a lower strength than the other specimens. A follow-up study is needed to compare the seismic performance of the specimen involving only a part of the masonry wall reinforced with the FRP sheets and the specimen reinforced using the steel bar truss system.

Study on Out-of-plane Properties and Failure Behavior of Aircraft Wing Unit Structures (항공기 날개 부분 단위구조체의 면 외 방향 물성 및 파손거동에 관한 연구)

  • Yoon, Chang-Mo;Lee, Dong-Woo;Byun, Joon-Hyung;Tran, Thanh Mai Nguyen;Song, Jung-il
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.106-114
    • /
    • 2022
  • Carbon fiber-reinforced plastic, well known high specific strength and high specific stiffness, have been widely used in the aircraft industry. Mostly the CFRP structure is fabricated by lamination of carbon fiber or carbon prepreg, which has major disadvantage called delamination. Delamination is usually produced due to absence of the through-thickness direction fiber. In this study, three-dimensional carbon preform woven in three directions is used for fabrication of aircraft wing unit structure, a part of repeated structure in aircraft wing. The unit structure include skin, stringer and rib were prepared by resin transfer molding method. After, the 3D structure was compared with laminate structure through compression test. The results show that 3D structure is not only effective to prevent delamination but improved the mechanical strength. Therefore, the 3d preform structure is expected to be used in various fields requiring delamination prevention, especially in the aircraft industry.

Application of the Stochastic Finite Element Method to Structural System Reliability Analysis (확율유한요소법의 구조시스템신뢰성해석에의 적용)

  • 이주성
    • Computational Structural Engineering
    • /
    • v.5 no.1
    • /
    • pp.97-108
    • /
    • 1992
  • This paper is an attempt to account for the uncertainty of the residual strength in the reliability analysis of structural systems. For this purpose the stochastic finite element method(SFEM) is linked to the system reliability analysis procedure. The stochastic finite element is known to be able to a more explicitly consider the effect of uncerainties of material and geometric variables on those of load effects in structural analysis procedure. The method has been applied to system as well as component reliability analysis of a plane structure. Comparison of the results by the present approach is made with the method in which the residual strength of failed component is treated as deterministic variable. Several case studies have been carried to show the effect of uncertainty in residual strength of a member after failure. Is has been conformed that reidual strength very much affect the system reliability level. It can be, hence, concluded that the uncertainties in the post-ultirnate behaviour may have to be taken into account in the system reliability analysis for a better a ssessment of the system reliability especially for a structure of which member behaviour is modelled as asemi-brittle model. And then the stochastic finite element method can efficiently evaluate the system reliability.

  • PDF

An Assessment of Safety Factor for Tunnels Excavated in a Weak Rock Layer (연약 암반층에 굴착된 터널의 안전율 평가)

  • You, Kwang-Ho;Park, Yeon-Jun;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.47-57
    • /
    • 2000
  • It is difficult to calculate factor of safety of a tunnel by applying any analytical method based upon limit equilibrium method since the shape of failure plane in tunnel analysis can not be easily assumed in advance. To cope with this shortcoming, a method is suggested to calculate safety factor of a tunnel by numerical analysis using strength reduction technique. A circular tunnel excavated in a homogeneous rock was selected as an example problem and factors of safety were calculated for no-supported, partly-supported, and completely-supported cases respectively. Meshes with 3 different sizes were examined for a sensitivity analysis. For the verification of the proposed method, a limit equilibrium analysis was conducted and compared with the numerical analysis. The proposed method herein can be used to calculate factor of safety of a tunnel regardless of tunnel shape or geological conditions, and thus can contribute for the improved design and stability assessment of tunnels.

  • PDF

A new high-order response surface method for structural reliability analysis

  • Li, Hong-Shuang;Lu, Zhen-Zhou;Qiao, Hong-Wei
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.779-799
    • /
    • 2010
  • In order to consider high-order effects on the actual limit state function, a new response surface method is proposed for structural reliability analysis by the use of high-order approximation concept in this study. Hermite polynomials are used to determine the highest orders of input random variables, and the sampling points for the determination of highest orders are located on Gaussian points of Gauss-Hermite integration. The cross terms between two random variables, only in case that their corresponding percent contributions to the total variation of limit state function are significant, will be added to the response surface function to improve the approximation accuracy. As a result, significant reduction in computational cost is achieved with this strategy. Due to the addition of cross terms, the additional sampling points, laid on two-dimensional Gaussian points off axis on the plane of two significant variables, are required to determine the coefficients of the approximated limit state function. All available sampling points are employed to construct the final response surface function. Then, Monte Carlo Simulation is carried out on the final approximation response surface function to estimate the failure probability. Due to the use of high order polynomial, the proposed method is more accurate than the traditional second-order or linear response surface method. It also provides much more efficient solutions than the available high-order response surface method with less loss in accuracy. The efficiency and the accuracy of the proposed method compared with those of various response surface methods available are illustrated by five numerical examples.