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Application of the Stochastic Finite Element Method
to Structural System Reliability Analysis
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SUMMARY

This paper is an attempt to account for the uncertainty of the residual strength in the reliability
analysis of structural systems. For this purpose the stochastic finite element method(SFEM) is linked
to the system reliability analysis procedure. The stochastic finite element is known to be able to a more
explicitly consider the effect of uncerainties of material and geometric variables on those of load effects
in structural analysis procedure. The method has been applied to system as well as component reliability
analysis of a plane structure. Comparison of the results by the present approach is made with the
method in which the residual strength of failed component is treated as deterministic variable. Several
case studies have been carried to show the effect of uncertainty in residual strength of a member after
failure. Is has been conformed that reidual strength very much affect the system reliability level. It can
be, hence, concluded that the uncertainties in the post-ultimate behaviour may have to be taken into
account in the system reliability analysis for a better a ssessment of the system reliability especially
for a structure of which member behaviour is modelled as asemi-brittle model. And then the stochastic
finite element method can efficiently evaluate the systemn reliability.
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1. INTRODUCTION

During the last decade a general fraework
for the reliability assessment of structural sys-
tems has been well established and it is matured
to apply the method to real structures. At these
days’ with regard to the methods for reliability
analysis the advanced first-order reliability
method(AFORM) is well accepted in assessing
structural reliability for a single limit state
equation. Many works have been carned out
on the structural system reliability analysis. In
system reliability analysis it has been well rec-
ognised that the post-ultimate behaviour of a
member after faillure much affect the residual
strength of structural system and consequenntly
on the system reliability(e.g, see references
1,2,3 and so on). The post-ultimate beh-
aviour is usually characterised by the post-ult-
imate slope, g and the residual strength para-
meter, # as shown in Fig.1 which are commonly
treated as deterministic variables at present.
With reference to some sxperimental works, for
example for the structural member found in
offshore platforms,*~® there may be sufficiently
large uncertainties in the post-ultimate slope and
the residual structural parameter. Hence they
should likely be treated as random variables.
The reliability analysis procedure commonly used
at present is that structural analysis is carried
out just once and the load effects, say stresses
and displacements, are directly input into the
reliability analysis procedure. And so the effect

of variation of material and geometric variables
on the variation of load effects are disregarded
in the structural analysis and the level of un-
certainties in load effects are assumed to be the
same as those of loadings itself. In this paper
for convenience the method adopting this assum-
ption is termed as the “ordinary reliability method
(ORM)" to distinct it from the stochastic finite
element method. This approach gives reasonable
level of structural reliability when the uncertain-
ties in material and geometric variables are com-
paratively small and do not affect the variation
of load effects. When the variation of material
and geometric variables are considerably great,
the result by this approach may be, however,
well outside the true solution. To solve this prob-
lem the stochastic finite element method has
been proposed and applied to reliability assess-
ment of structures.’~'® In this method the
general procedure of the ordinary reliability met-
hod is to be followed and the structural analysis
is repeated to get the sensitivities of basic var-
iables. This approach can, hence, more explicity
account for the effect of uncertainties in material
and geometric variables and may give a closer
solution to the true solution than the ordinary
rehability method even for a single hmit state
equation, that is the component reliability analy-
sis. One of major shortcomings is that the com-
putational time is very much more expensive
than the ordinary reliability method since the
structural analysis should be repeated many times
to get the gradient of limit state equation to
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random variables (at every iteration steps when
iterative method is used). In spite of this the
stochastic finite element method seems to be
an adequate method to account for the uncer-
tainties of the post-ultimate behaviour, say the
residual strength and the post-ultimate slope.
These are a kind of material variables.

In the next section detailed is the formulation
procedure of a kind of stochastic finite element
method. In system analysis the residual strength
parameter only is considered, that is, the post-
-ultimate behaviour of member after faibure is
modelled into the two-state model as in Fig.l
(a). For the system reliability analysis, so called,
the extended incremental load method developed
by the present author is used to get the limit
state equation of failure mode® and the ident-
ifying procedure proposed also in reference 3
is used. Several case studies for a simple plane
frame structure have been carried out with
varying the mean and COV of the residual
strength parameter to investigate their effects
reliability. Comparison
made between the cases when the residual

on the system is

strength parameter is deterministic and when
it i1s probabilistic.
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(a) two-state model (b) three-state model

Fig.1 Typical Model of Post-Ultimate Behaviour
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2. FORMULATION OF STOCHASTIC RNITE
ELEMENT METHOD

The apparent difference of the stochastic
finite element method from the ordinary relia-
bility method is that uncertainties in material
and geometric variables can be explicitly acco-
unted for. A few algorithms have been propos
ed. 10 Reference 11 well summaries the state
of-the-art in this area. In this paper the algor-
ithm proposed by Kiureghian and Taylor!®1?
is adopted. An essential point in applying the
method is to find the partial derivatives of limit
state equation to random variables. Let divide
the random variables into two groups: resistance
variable vector {r} and load variable vector {q},
that is, random variable vector {x} is:

{x}=({r}, {g}) @D

and the limit state equation is expressed in
terms of random variables as:

g({x) =g({x}), {g}) @

Using the displacement method of structural
analysis for a linear system of N degrees of
freedom, the stiffness equation is given as:

(KU} ={F} 3

where (K] is the stiffnes matrix of total struc-
tural system. {U} and {F} are nodal displacement
and nodal force vectors, respectively. The elem-
ents of [K] in general contains random variables
such as material and geometric properties, and
the vector {F} contains geometric properties and
the applied loads. It is clear that [K] and {F}
are random and hence {U} would be also rand-
om. For a linear structural system the load
effects {q} would be stress of elements or nodal
displacement. For a component considered now
the load effect is obtained from:
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{q"} =[B}u' “)

in which superscript (¢) is the element which
contains the component considered now and
matrix [B] is the load effect-nodal displacement
relation matrix of which each element is a
function of material and geometric variables.
At the current design point {x*} the limit state
equation is g({x*}) =g({r"}, {g"}) where {r*} is
explicity known in terms of {x*} {¢"}Is given
using Eqs.(3) and (4) as:

gy =(BI"(KI"{FYL ®)
in which the curled bracket of vectors {x} and
{x"} and omitted. Suerscript (e) is added to
denote that the nodal displacement vector: is
_related to element (e) is sorted out using the
element topology data (as well known). The
partial derivatives of limit state equation (2) to
random variables is given by:

{—&},, ({—&}{ }

(G q* an Naer

.- ; ()

All terms can be easily calculated except the

term of{dq,/dx;}. Using Eq.(5) the derivative is
given as follow:

R e KL T
dU \en 4B .
({Ei—})"]m- ( ey {9+

-1
R R

@
It is easily shown that
Ml_ IM [ K] 1
dx;
®

Then Eq.(7) becomes

{—di}x 1 )7

BI"(1K) 1(—51’—(L WS N

where {U} is obtained from Eq.(3) at the current
design points.

After calculating partial derivative {dg./dx}
from Eq.(9) the partial derivative of Eq.(6) is
completely calculated. Once after obtaining the
partial derivative of limit state equation the
iterative procedure!® can work. The load effect
in the limit state equation (2) is implicity a
non-linear function of random variables. The
above formulation of the stochastic finite elem-
ent method has a merit that the available com-
puter code for the ordinary reliability analysis
can be used without much modification.

3. NUMERICAL EXAMPLES OF COMPONENT
RELIABILITY ANALYSIS

Two plane frame structure models shown in
Figs.2 and 3 are selected for the present study.
Comparison is made between the component
reliability indices by the ordinary reliability
method and by the stochastic finite element
method.

The simple protal frame model shown in Fig.
2 is frequently selected in the system reliability
analysis and sensitivity stody. It has four beam
elements and five nodes. Both nodes of an
element are treated as components. Component
failure is assumed to occur when bending
moment at a particular element is reached
the plastic bending moment, and the limit sate
equation is given by:

grg)=r—q (10)
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where 7 is plastic bending moment as strength
and ¢ bending moment as load effect. Data
for this model are also shown in Fig.l. For
simplicity all variables are assumed to be norm-
ally distributed and statistically independent.
There are 8 random variables for each compo-
nent (see Table 1). In the stochastic finite ele-
ment analysis, the structural analysis procedure
is repeated many time. A variable of which
sensitivity factor is less than ea, after the first
iteration, is treated as a deterministic one form
the second iteration to reduce the number of
random variables and computational time, where
&x 1s a prescribed small number. Doing this is
expected not to effect the result. For example
Table 1 compares the results of Component 7
in Fig.2 when &4=0 and 0.01, respectively and
when COV of material and geometric variables,
say E, A and I, is 20%. It can be seen that
treating the variabless of which sensitivity factor
are less than &,(=0.01) does not affect the
result.

For most steel structures the COVs of elastic
modulus and geometric variables are compara-
tively smaller than those of load effects and
usually have the value ranging 4 to 10%. To
see the effect of uncertainties in such variables
on the reliability level, reliability indices of 7
componets in Fig.2 (Component 5 is the same
as Component 4) are evaluated with varying
the COV from 10% to 30%. These range may
not be, of course, realistc and just for illustration.
When applying the ordinary reliability metho,
the limit state equation is given by:

gr.g)=r—(gV+ 4?) Qan

in which ¢ and ¢® are bending moments due
to load PV and P,® respectively. Table 2 shows
the resuits by the ordinary reliability method
and by the stochastic finite element method.
The stochastic finite element method gives

smaller reliability indices than the ordinary
reliability method as can be expected. As it is
seen, the difference of the reliability indices by
the two method is small for this structure model.
Even when the COVs of E, A and I are 309,
the difference lies 3 to 9% except Components
2 and 3. In the case that the COVs are less
than 159%, the difference is less than about
5% for all components. This means that when
COVs of material and geometric properties are
less than about 159%, the ordinary reliability
method gives reasonable reliability indices and
within this range the stochastic finite element
method could not keep its merit.

p @

3 4V (5) 6
s o

p |2

il

Sm

4 8

lt— 5m —pbe— Sm —"']l
comp. Ak Ik Ry
1,2 4.0 3.58 0.075
34 4.0 4.77 0.101
5,6 4.0 4.77 0.101
7.8 4.0 3.58 0.075

k  =component number

Ay =cross sectional area(x10™ m?)

L =moment of inertia(x10® m?)

mean yield stress=276 MPa

Ry =mean strength(=plastic bending moment, Mn)
Py =0.02 MNPy, =0.04MN

COV of Ry=5%, COV of Py, and Py,=30%,

Fig.2 Portal Frame Model

As a reinforced concrete structure model, a
5 story-3 bay building shown in Fig.3 is consi-
dered.’® The uncertainties of material and
geometric properties of RC structures are com-
paratively greater than steel structures. Data
for reiiability analysis of this model are listed

-101-
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Table | Sensitivity Factor of Random Variables for Component 7 of Portal Frame Model

ORM"* =ordinary reliability method

COV*=CQV of material and geometric variables of all

Fig.3 5 Story-3 Bay Building (after reference 12)

(1) when €5 =0 (2) when &4 =0.01
variable design point a varible destgn point a
R, 0.7364E-01 02770 R, 0.7364E-01 0.2770
E 0.2100E + 06 0.02506E-3 E 0.2100E +06 0.0000
A 0.4000E-02 —0.9939E-04 Al 0.4000E-02 0.0000
r 0.3677E-04 —0.1038 r 0.3677E-04 —0.1038
A? 0.4001E-02 ~0.1306E-02 A 0.4001E-02 0.0000
r 0.4631E-04 0.1112 P 0.4631E-04 0.1112
po 0.2343E-01 —0.4373 p 0.2343E-01 —0.4373
P2 0.5319E-01 —0.8419 pe 0.5319E-01 ~0.8419
£=1.306 P;=0.0958 £=1.306 P¢=0.0958
No.of iteration =25 No.of iteration=2
(note) A'.I'=A and I of Components 1,2,7 & 8
A?I?=A and I of Components 3,4,5 & 6
Table 2 Reliability Indices to Changes in COVs of E, A and C:°‘ :
el T T T 1T T T 1T 1 1 1T T 1.1
| of Portal Frame Model ! of s ‘;A- a, AT soan s,
by the stochastic finite element method SR S 5 S N O Y S 0
P | by ORM: [ COV'=10% | 15% | 20% | 30% R PP N )
1 5.647 5612 5564 | 5485 | 5348 ® LT RT T T T I I I I
2 4331 4230 4125 | 4000 | 3687 S o A
3 6.03 598 | 5763 | 5565 | 5212 . 0 O I O N
45) 1.979 1.968 1954 | 1934 | 1877 ) DTV LI R PN
6 3179 315 | 313 | 3113 | 3088 0t O B I
TAs ¢, fAF
7 132 138 | 1313 | 1306 | 1288 Lo I T P
|8 2349 2321 2287 | 2243 | 2130 " o C e
T R B

components
Table 3 Data for 5 Story-3 Bay Building(after reference 12) : unit=kips, ft
variable mean cov dist.type varible mean Ccov dist.type
W, 6.00 0.18 log-normal L 1.63 0.24 normal
W, 7.50 0.18 log-normal L 2.69 0.12 normal
W, 8.00 0.18 log-normal A, 3.36 0.18 normal
P, 22.5 0.40 extreme type-I A, 4.00 0.18 normal
P, 20.0 0.40 extreme type-I A, 5.44 0.18 normal
! P, 16.0 0.40 extreme type-I A, 2.72 0.33 normal
E, 454.0 0.09 normal Ay 3.13 0.33 normal
E, 497.0 0.08 normal Ag 4.01 0.33 normal
L 0.94 0.12 normal R, 700.0 0.14 log-normal
L 1.33 0.12  normal R, 500.0 0.10  log-normal
L 247 0.12 normal R, 1400.0 0.11 log-normal
I, 1.25 0.24 normal
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in Table 3. The COV of geometric variables
ranges from 12% to 33%.

The limit sate equation concerns the reliability
of element i-j of the model(see Fig.3). A Node
i is taken here which is under the combined
axial force and bending moment. For the pur-
pose of illustration the equation given by Eq.
(12) is taken as in reference 12:

N © S F;
g({x)=1 AR, .
_ 2

LR,(1 RoA. ]

(12)

where F, is the axial force and F; is the bending
momcnt at node i In Table 3 the distributed
loads W;, W, and W, have the same probabilistic
characteristics except mean values and this also
works for the concentrated loads P,, P, and P,.
The load cases can be hence grouped into
two cases:

Load casel : distributed loads W,, W, and W,

Load case2: concentrated loads P, P, and P
For the ordinary reliability analysis the limit
state equation can be expressed referring to Eq.
(12) as:

L (F3+FY)
g =1

F+ F3
) 2)
Ist[l—M] (13)
R3A3

in which superscript (1) and (2) are refer to the
load effects due to Load cases 1 and 2, respe-
ctively. The stochastic finite element method
is applied to Node i with data in Table 3 and
another case that COV’s of elastic modulus,
sectional area and moment of inertia are unif-
ormly given as 10%, is also carried out. Results
are summarised in Table 4. With data in Table
3, the stochastic finite element method gives

20% smaller reliability index than the ordinary
reliability method. This difference may be due
to that the large values of COV’s of sectional
area and moment of inertia much pull down
the reliability when using the the stochastic
finite element analysis. When COV’s of all
material and geometric variables are uniformly
given as 10%, the difference is about 6%,.

Table 4 Summary of Reliability Analysis for Building

by ORM: by stochastic finite element method
cov.I Cov-[*=
B 274 220 257
P 0.303E-02 0.0138 0.508E-02
ORM"  =ordinary reliability method
CIV-I" =COV values of E, A and I in Table 4

COV-[I""=COV of E, A and I of all member are 109,

4. APPLICATION TO SYSTEM RELIABILITY
ANALYSIS

When using the stochastic finite element
method, the computational cost is in general
much more expensive than the ordinary reliab-
lity method even in the component reilability
analysis since structural analysis is repeated tens
of time to get the gradients of limit state equ-
ation to random variables. If the stochastic finite
element method is linked to the system reliability
analysis procedure, the computing time must
be tremendous. Considering this point,the portal
frame model in Fig.2 is selected again to illus-
trate the application of the present stochastic
finite element analysis procedure to the system
reliability analysis of a structure of which member
behaviour is not ductile. The two-state model
for post-ultimate behaviour shown in Fig.l (a)
is employed and the residual strength parameter
only is considered.
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4.1 Sensitivity Study

Firstly, investigated is the effect of uncerta-
inties material and geometric variables on the
reliability of failure path (called “path reliability™
hereafter). For this, the path 7-4-8-2 shown in
Fig.4 is selected which is the most important
failure mode (or the most dominant failure mode)
of the portal frame model, Fig.2 when the
behaviour of all member is ductile!® Table 5
shows the reliability indices till system failure
occurs with varying COVs of all material and
geometric variables, say E, A and I, from 0
to 30%. It is shown that for the present frame
model, the uncertainties in E, A and I do not
affect the path reliability index especially as
components failure is in progress. This can be
also conformed from the sensitivity factors of
such variables. To compare the sensitivity factor
of random variables, the reidual strength param-
eter, # is included as another random variable.
The path 7-4-8-2 is selected again for this
purpose. As well recognised, since the important
failure modes (or dominant failure modes) are
depending on the post-ultimate behaviour after
failure, the path 7-4-8-2 may not be the most
important one when the post-ultimate behaviour
of members is not ductile. Selecting the path
7-4-8-2 is just for illustration in this section.

As previously described, the two state model
for the post-ultimate behaviour is employed. Four
cases are considered as follows.

Case 1:7=09 COV of EA & 1=20%

Case 2:7=09 - =30%
Case 3:7=05 - =20%
Case 4:7=05 - =30%

COV of #, V, is given as 10% for all cases.
Table 6 shows the sensitivity factors of random
variables after the first iteration. It is shown
that the sensitivities of limit state equation(l
0) to vanables E, A and I are negligiblly small

even the case when their COVs are 30%. Their
uncertainties, hence, do not give any influence
on the path reliability index. Based on this
finding the material and geometric variables (E,
A and I) will be treate as deterministic ones
hereafter.

8 @ : active hinge
O: non-active hinge

Fig.4 Failure Mode of Path 7-4-8-2

Table 5 Path Reliability Index of path 7-4-8-2 to Changes
in COVs of EAA and |

COVofE A&l 7 74 7-4-8 7-4-8-2
0% 1322 1.868 2.09% 2.489
10% 1318 1.865 2.09%6 2489
20% 1.306 1.858 2.0% 2489
0% 1.288 1.846 2094 2.489

(note) COV of 7=10%, COV of load: V. =30%

Table 6 Sensitivity Factors of Random Variables in Limit State
Equation after the First Iteration for Path 7-4-8-2 of
Portal Frame Model

warible 7=05 7=09
Veu=2% Veu=3% Veur=2% Veur=30%

R, 05868601 05868E =01 06116E01 06118E1
E —083%E4 ~088%E-H 0.6386E-4 0.6336E-4
A —0121E0 -0.18%EM -023%E9 ~03583E09
F —0.1149E04 -0.178E0 ~0HITE® -08126E5
A —04787E10 ~0.718E-10 0.1719E-10 0.2578E-10
P —08%BIEM -~01UTE®R 03306E-04 0.7963E04
Ty 0.105% 0.105% 06116E01 06116E01
N 0284 0.284 0.1647 0.1647

P ~-09179E-9 091790 —-02461E-06 —02461E06
P -09389 -0939 -0978 -0978
Ry 05281E41 05%1E01 03058E01 0.358E01
R, 0142 0.42 0.0823E1 0837EL

(note) A'I'=A and I of Components 1,2,7 & 8
A*IP=A and I of Components 3,4,5 & 6
Vea i =COVof E, A &I COV of : Vy=10%,

- 104 -
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The load effect of component are mainly
depending on loading variables. When any
component has failed, it affects the stiffness
matrix as well as the residual strength of a
structure system, and consequently on the re-
distribution of load effect of survival components
in a structure. Investigated is the relative infl-
uence of the residual strength parameter and
load on the path reliability index. Several case
studies have been carried with the path 7-4-8
-2 as above. The range of mean and COV of
7, and COV of load are listed as follows.

1) mean of # =0.5, 0.9 for all members

2) COV of #:0, 10, 20, 30(%)

3) COV of load: V=10, 20, 30(%)

Altogether results of 24 cases are produced
by applying the stochastic finite element method.
Table 7 and Fig.5 show the path reliability
indices to changes in uncertainties in # and load
(Fig.5 is a graphic representation of Table 7). As
far as the present numerical results are conce-
med, it can be drawn that:

1) the path reliability index depends more on
the uncertainty of load than that of residual
strength.

2) on the basis of the above finding, it may
be natural that the path reliability is not
sensitive to change in ¥, when V, is large,
say 30% and this be due to that the large
value of ¥V, overwhelms the effect of ¥,
In similar when ¥, is large, the path rel-
iability index is not much affected by V,.

3) as a typical case when V, is 30%, the path
reliability index, when ¥V, is 30%, is 12
and 18% less than the case when V¥, is
0%, i.e., # is deterministic, and mean of
7 is 0.5 and 0.9, respectively.

From these discussions, although the effect
of ¥V, on the path reliability inex is relatively
smaller than that of V,, it is clear that V, gives
nearly the same order of influence on the path

reliability index as ¥, and the path reliability
index is also much sensitive to changes in V,
when V., is comparatively small. This also
conforms that the uncertainty in the residual
strength of a failed component is important in
the system reliability analysis.

4.2 Case Studies

As mentioned before, the important failure
mode is much dependent on post-ultimate beh-
aviour of members. This section is concerned
with the most important failure with varying
¥, (COV of ) and ¥ (COV of load) within the
same range for Table 7 and Fig.5, and when
7=0.5 as follows.

1) mean of # = 0.5 for all members

2) COV of »: V,=0, 10, 20, 30(%)

3) COV of load: ¥; =10, 20, 30(%)

Fig.6 shows the result of case study. The
most important failure mode of each case is
shown with its path reliability (8m) and the
corresponding failure probability(P¢ pe). In ide-
ntifying the most important failure mode, the
procedure in reference 3 is adopted which con-
siders the deterministic criteria as well as the
probabilistic criteria. From Fig.6 it is shown that
nearly the same tendency in effects of changes
in ¥, and ¥V, on the path reliability index as
seen in Table 7 and Fig.5 in the previous sec-
tion, and the uncertainty in 7 much decrease
the path reliability index. When the post-ultimate
behaviour of all members is ductile, the mot
important failure mode is path 7-4-8-2 and its
path reliability index is 2.48%(see Table 5). When
the post-ultimate behaviour of all members is
non-ductile, its path reliability index much
decreases as shown in Table 7 and Fig.h.
However as seen in Fig.6, the path is not the
most important one any more in the case of
non-ductile system. This is due to the different
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distribution of load effects from the ductile

stem.

Path 4-7-8-3 at third and fourth row of right
umn in Fig.6 is actually one of the important
ure mode of ductile system when ¥, is 30%
its path reliability index is 2.489 which
e same as that of path 7-4-8-2 . As shown
ig.6 when ¥, is 30%, 7=0.5, and v, is 20
its path reliability is decreased by
65 and 70%, respectively. This typically

30%.,

10

Path Reliability index

—O— COV of Load = 10%
—#—  COQV of Load = 20%
—fh—— COV of Load = 30%

i the effect of residual strength of failed 0
nents on the residual strength of structural
, re-distribution of load effect and cons-

y on the path reliability. Comparing path
and path 7-4-8-2 when #=0.5 and V,=

T
10 20

30

COV of Residual Strength Parameter

(b) n=05

Fig.5 Reliability Index vs V; and V, of Path 7-4-8-2

VL
. . . e , 10% 20% 30%
. 7-4-8-2. This difference of reliability i)
) PATI 4-7-1-8 PATH 4-2-8-1 PATH 4-36-1
stween the two paths is also due to the .
-t re-distribution effect between failure 0% ¢ ¢
1 8 1 8
paths. ﬁmh =1.683 5pam =1.330 ﬂpﬁh =1.163
10 P, path =0.0462 P| path =0.0916 Py ran <0122
x £ PATH 4-7-1-8 PATH 4-3-8-6 PATH 4-3-86
2 —O—— COVoflLoad = 10% 7
< —®— COVofload = 20% 4
= 8 ~—f— COV of Load = 30% 10% . 8 g
'(E“ Brun <1352 Bran =089
S Pi.puth —0.0852 Py path =0.186
o« PATH 4-7-12 PATH 4-7-3-8
% 7 7 3 bt 7
o 20%
8
] puty 71030 B path <1024 — B pah  =0870
Py paih =0.151 P path =0.153 P¢ patn =0.181
PATH 4-7-3-8 PATH 4-3-86 PATH 4-7-3-8
3 7 3 3 b1 ‘ 7
0 ¢
T T T 30%
0 10 20 30 i} =0.900 ’ i =0,857 ’ [ =0.728 ’
. path - path g path .
COV of Residual Strength Parameter P oaih =0.183 Pr oaih =0.195 Py path =0231
pa ., pal
@) 7=0.9 @ :activehinge O :non-active hinge

Fig. 6. Most Important Failure Modes to Changes in V; andv,
when 7=0.5

Table 7 Reliability index of Path 7-4-8-2 to Changes in Uncertainties of Residual Strength Parameter and Load

(@ 7=09 ®) 7=0.9
Vo Vo '
v, 0.1 0.2 0.3 v, 0.1 0.2 0.3
0% 5514 3.007 2.041 0% 6.484 3.367 2.262
10% 4.180 2.723 1.945 10% 5.772 3.254 2.262
20% 2771 2.193 1.772 20% 4.531 2973 2.130
30% 1.992 1.742 1476 | 30% 3.534 2.633 1.994
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5. DISCUSSION AND CONCLUSIONS

This study has concerned with the application
of the stochastic finite element method to the
reliability analysis of structural system. Formu-
lation of the present stochastic finite element
analysis in detailed

From the component reliability analysis the
stochastic finite element method may have
advantage over the ordinary reliability method

when COVs of material and geometric variables.

are larger than 15 to 20%. This figure, of
course, depends on the structure types. With
regard to the results of system reliability analysis
for a simple plane frame structure, it has been
found that the path reliability index of failure
mode is not affected by the variation of COVs
of material and geometric variables, even when
the COVs are large enough such as 30%. The
residual strengths of failed components, as
another material variables, give much lowering
effect on the path reliability, rather than mat-
erial and geometric variables, which is due to
the effect on the residual strength and the
re-distribution of load effects on components
of structural system.

If one examine the previous experimental
works for structural members found in offshore
platforms, buildings and so on, it would be
recognised that the post-ultimate behaviour is
mainly non-ductile and there is sufficiently
enough uncertainty in the post-ultimate behav-
iour. It can be, hence drawn that the uncerta-
inty in the post-ultimate behaviour should likely
be accounted for in the system reliability ana-
lysis, as concerned in this paper, for a better
assessment of system reliability. And then the
stochastic finite element method becomes ade-
quate method in doing that.

As previously montioned, the post-ultimate
behaviour is usually characterised by the residual

strength parameter and the post-ultimate slope.
This paper is basically an attempt to illustrate
the effect of uncertainy in the residual strength
on the path reliability of failure mode with the
two-state model. More work would be needed
in the application of the stochastic finite element
method to reliability analysis of structural system
before applying to real structures, and the
uncertainties not only in the residual strength
but also in the post-ultimate slope should be
quantified for various tupes of structure mem-
bers under possible loading conditions through
experiments and non-linear structural analysis.
This extension will be presented at the judicial
conference in the near future. .
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