• Title/Summary/Keyword: Plane failure method

Search Result 198, Processing Time 0.028 seconds

Correlation of Tectolineaments and Discontinuities in connection with Slope Failure (사면 붕괴와 관련 구조선 분석과 불연속면의 상관성 연구)

  • Baek, Yong;Koo, Ho-Bon;Kim, Seung-Hyun
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.303-313
    • /
    • 2001
  • A cut-slope near Guam-Ri Hwado-Eup Namyangju-Si Kyunggi-Do collapsed during a heavy rainfall over 400mm at 28th of August 2000. The cut-slope collapse reportedly developed mainly by block sliding along a set of discontinuities, although slope angle of the cut-slope was 40$^{\circ}$(1:1.2) that agrees with the road construction criteria. This study aims to analyze differences and correlations among several data-collecting methods limited to discontinuity analysis related with cut-slope collapse. This study started with analysing discontinuity surface characteristics, geology of the country rock and orientations of the discontinuities directly related with the collapse. Analysis of aerial photos around the study area provided regional lineament data, and discontinuity plane description and measurements were collected from core logging and Borehole Image Processing System (BIPS). Spearmans correlation ranking coefficient method was used to get correlation of discontinuity planes according to analysis methods. The result suggests that the correlation coefficient is ${\gamma}_s$ = 0.91 Plus, stability analysis of discontinuity plane orientation data using equal-area stereonet revealed that the study area is unstable to planar failure. This study suggests that the cut-slope angles currently applied should be shallower and that significant attention is required to orientation distribution of discontinuities existed in cut-slopes studies.

  • PDF

Analysis of corrugated board panels under compression load

  • Biancolini, M.E.;Brutti, C.;Porziani, S.
    • Steel and Composite Structures
    • /
    • v.9 no.1
    • /
    • pp.1-17
    • /
    • 2009
  • This paper is focused on the buckling and post buckling behaviour of rectangular corrugated board panels simply supported and subjected to compression load. The aim of the work is to understand the failure mechanism of investigated structure in order to quantify the effect of design parameters on the strength of a panel of given geometry. Two numerical models were developed adopting the finite element method. In the first one the corrugated board is represented by means of shell elements adopting an equivalent material, in the second the local structure is described in full detail modelling both straight and corrugated layers by means of shell elements and representing the connection between layers by special interface elements. The model correctness was checked by the comparison between out of plane central displacement predicted by the models and the experimental values found in literature. For the same case the effect of panel planarity error was evaluated. Finally a parametric analysis to investigate the effect of design parameters was carried out.

A Study on Measurement of ESDD and Contamination Performance of Polymeric Outdoor Insulators (옥외용 절연체 표면에서의 ESDD 측정과 내오손특성에 관한 연구)

  • 연복희;유형철;이현진;송정용;이태호;허창수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.427-430
    • /
    • 2002
  • This paper presents on contamination performance of polymeric outdoor insulator with different contaminant accumulation. The ESDD (equivalent salt deposit density), tracking resistance and clean-fog test were performed to investigate the characteristics of contamination performance on polymeric outdoor insulator. Furthermore, we evaluated together with the porcelain samples for its comparison. It is found that ESDD of polymeric and porcelain insulator depends on the installation position. This surface accumulation of contaminant lead to the loss of surface hydrophobicity, expecially upper shed part of polymeric insulator. In addition, the effect of an artificial contaminant on the tracking resistance by inclined-plane method and leakage suppression ability under clean fog was surveyed. The time of tracking failure did not appear to change significantly with a much contaminant accumulation, while leakage current under clean-fog increased.

  • PDF

Multivariate adaptive regression splines model for reliability assessment of serviceability limit state of twin caverns

  • Zhang, Wengang;Goh, Anthony T.C.
    • Geomechanics and Engineering
    • /
    • v.7 no.4
    • /
    • pp.431-458
    • /
    • 2014
  • Construction of a new cavern close to an existing cavern will result in a modification of the state of stresses in a zone around the existing cavern as interaction between the twin caverns takes place. Extensive plane strain finite difference analyses were carried out to examine the deformations induced by excavation of underground twin caverns. From the numerical results, a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) has been used to relate the maximum key point displacement and the percent strain to various parameters including the rock quality, the cavern geometry and the in situ stress. Probabilistic assessments on the serviceability limit state of twin caverns can be performed using the First-order reliability spreadsheet method (FORM) based on the built MARS model. Parametric studies indicate that the probability of failure $P_f$ increases as the coefficient of variation of Q increases, and $P_f$ decreases with the widening of the pillar.

Reliability Improvement Method of Weld Zone in Water Wall Tube for an Ultra Supercritical Coal Fired Boiler (초초임계압 석탄화력 보일러 수냉벽 수관의 용접신뢰성 향상방안)

  • Ahn, Jong-Seok;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.6 no.3
    • /
    • pp.53-61
    • /
    • 2010
  • This paper presents failure analysis on weld-joint of the waterwall tubes in USC boilers. Visual inspections were performed to find out the characteristics of the fracture. Additionally both microscopic characteristics and hardness test were carried out on failed tube samples. Failures seem to happen mainly because the welding process such as preheating and PWHT(post-weld heat treatment) was not conducted strictly. Thus, this paper has the purpose to describe the main cause of the poor welding process and to explain how to prevent similar failures in those weld-joints.

  • PDF

Selection of the Protective Coating Material for Blades of a Booster Fan in Desulfurization Plant (탈황설비용 부스터팬 블레이드의 코팅재질 선정에 관한 연구)

  • Jeong, Byeong-Yong;Yoo, Hoseon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.6 no.3
    • /
    • pp.46-52
    • /
    • 2010
  • This study investigated the coating failure of the blades of booster fans for the 200 MW flue gas desulfurization plant. Although the arc sprayed SM8222 have been tried as blade coating materials aimed to apply as alternatives of Metcoloy(R)2 due to better corrosion-erosion resistance but it is failed. Bond strength tests and practical field experiences have demonstrated high velocity oxy-fuel(HVOF) coating method with Diamalloy 3004 as an alternative to Metcoloy(R) 2 arc spray.

  • PDF

Analysis of Pull-out Behavior of Tunnel-type Anchorage for Suspended Bridge Using 2-D Model Tests and Numerical Analysis (2차원 모형실험 및 수치해석을 통한 현수교 터널식 앵커리지의 인발거동 특성 분석)

  • Seo, Seunghwan;Park, Jaehyun;Lee, Sungjune;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.61-74
    • /
    • 2018
  • In this study, the pull-out behavior of tunnel type anchorage of suspension bridges was analyzed based on results from laboratory size model tests and numerical analysis. Tunnel type anchorage has found its applications occasionally in both domestic and oversea projects, therefore design method including failure mode and safety factor is yet to be clearly established. In an attempt to improve the design method, scaled model tests were conducted by employing simplified shapes and structure of the Ulsan grand bridge's anchorage which was the first case history of its like in Korea. In the model tests, the anchorage body and the surrounding rocks were made by using gypsum mixture. The pull-out behavior was investigated under plane strain conditions. The results of the model tests showed that the tunnel type anchorage underwent wedge shape failure. For the verification of the model tests, numerical analysis was carried out using ABAQUS, a finite element analysis program. The failure behavior predicted by numerical analysis was consistent with that by the model tests. The result of numerical analysis also showed that the effect of Poisson's ratio was negligible, and that a plugging type failure mode could occur only when the strength of the surrounding rocks was 10 times larger than that of anchorage body.

Two Dimensional Size Effect on the Compressive Strength of T300/924C Carbon/Epoxy Composite Plates Considering Influence of an Anti-buckling Device (T300/924C 탄소섬유/에폭시 복합재 적층판의 이차원 압축 강도의 크기효과 및 좌굴방지장치의 영향)

  • ;;;C. Soutis
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.88-91
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section (length x width) was investigated on the compressive behavior of a T300/924 [45/-45/0/90]3s, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a 30$\times$30, 50$\times$50, 70$\times$70, and 90mm$\times$90mm gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

  • PDF

Kinematic Analysis of Plane Failure for Rock Slope Using GIS and Probabilistic Analysis Method (GIS와 확률론적 해석 기법을 기반으로 한 평면파괴의 운동학적 안정성 해석)

  • Lee, Seok Hwan;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.121-131
    • /
    • 2014
  • The stability of rock slope is mainly controlled by the orientation and shear strength of discontinuties in rock mass. Therefore, in kinematic analysis, the orientation of the combination of discontinuities and slope face is examined to determine if certain modes of failure can be occurred. In previous kinematic analysis, a representative orientation of the slope face and mean orientation of discontinuity set were used as input parameters. However, since the orientations of slope face varies according to locations of measurement, the representative slope face orientation could cause misunderstanding for kinematic instability. In addition, since the orientations of each discontinuity are scattered in the same discontinuity set, there is the possibility that uncertainties are involved in the procedure of kinematic analysis. Therefore, in this study, the detailed digital topographic map was used to obtain the orientation of slope face. In addition, the probabilistic analysis approach was utilized to deal properly with the uncertainties in discontinuity orientation. The proposed approach was applied to steep slopes in mountain road located in Baehuryeong, Chunncheon city, Gangwon-Do. The analysis results obtained from the deterministic and probabilistic analysis were compared to check the feasibility of proposed the analysis.

Theoretical solutions for displacement and stress of a circular opening reinforced by grouted rock bolt

  • Zou, Jin-Feng;Xia, Zhang-Qi;Dan, Han-Cheng
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.439-455
    • /
    • 2016
  • This paper presented solutions of displacement and stress for a circular opening which is reinforced with grouted rock bolt. It satisfies the Mohr-Coulomb (M-C) or generalized Hoek-Brown (H-B) failure criterion, and exhibits elastic-brittle-plastic or strain-softening behavior. The numerical stepwise produce for strain-softening rock mass reinforced with grouted rock bolt was developed with non-associative flow rules and two segments piecewise linear functions related to a principle strain-dependent plastic parameter, to model the transition from peak to residual strength. Three models of the interaction mechanism between grouted rock bolt and surrounding rock proposed by Fahimifar and Soroush (2005) were adopted. Based on the axial symmetrical plane strain assumption, the theoretical solution of the displacement and stress were proposed for a circular tunnel excavated in elastic-brittle-plastic and strain-softening rock mass compatible with M-C or generalized H-B failure criterion, which is reinforced with grouted rock bolt. It showed that Fahimifar and Soroush's (2005) solution is a special case of the proposed solution for n = 0.5. Further, the proposed method is validated through example comparison calculated by MATLAB programming. Meanwhile, some particular examples for M-C or generalized H-B failure criterion have been conducted, and parametric studies were carried out to highlight the influence of different parameters (e.g., the very good, average and very poor rock mass). The results showed that, stress field in plastic region of surrounding rock with considering the supporting effectiveness of the grouted rock bolt is more than that without considering the effectiveness of the grouted rock bolt, and the convergence and plastic radius are reduced.