• Title/Summary/Keyword: Plane Tracking

Search Result 179, Processing Time 0.027 seconds

A NEW METHOD OF LQ INTEGRAL CONTROL, FOR NONMINIMUM PHASE SYSTEMS

  • Kwon, Byung-Moon;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.79-82
    • /
    • 1999
  • The right half plane (RHP) zeros may cause severe problems, such as undershoots, oscillations and time delay in the transient response of the systems. In this paper, we formulate a linear quadratic type problem to deal with the effects of the RHP zeros in the nonminimum phase systems. Based on the LQ formulation, this paper shows the trade-off relation between undershoot and rising time performances in nonminimum phase systems by using a new performance index which consists of new state and tracking error. And performances of the proposed method are shown via computer simulations.

  • PDF

Position control of a Mobile Inverted Pendulum using RBF network (RBF 신경회로망을 이용한 Mobile Inverted Pendulum의 위치제어)

  • Noh, Jin-Seok;Lee, Geun-Hysong;Jung, Seul
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.179-181
    • /
    • 2007
  • This paper presents the desired position control of the mobile inverted pendulum system(MIP). The MIP is required to track the circular trajectory in the xy plane through the kinematic Jacobian relationship between the xy plane and the joint space. The reference compensation technique of the radial basis function(RBF) network is used as a neural network control method. The back-propagation teaming algorithm of the RBF network is derived and embedded on a DSP board. Experimental studies of tracking the circular trajectory are conducted.

  • PDF

Estimation of a Gaze Point in 3D Coordinates using Human Head Pose (휴먼 헤드포즈 정보를 이용한 3차원 공간 내 응시점 추정)

  • Shin, Chae-Rim;Yun, Sang-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.177-179
    • /
    • 2021
  • This paper proposes a method of estimating location of a target point at which an interactive robot gazes in an indoor space. RGB images are extracted from low-cost web-cams, user head pose is obtained from the face detection (Openface) module, and geometric configurations are applied to estimate the user's gaze direction in the 3D space. The coordinates of the target point at which the user stares are finally measured through the correlation between the estimated gaze direction and the plane on the table plane.

  • PDF

RGB Camera-based Real-time 21 DoF Hand Pose Tracking (RGB 카메라 기반 실시간 21 DoF 손 추적)

  • Choi, Junyeong;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.942-956
    • /
    • 2014
  • This paper proposes a real-time hand pose tracking method using a monocular RGB camera. Hand tracking has high ambiguity since a hand has a number of degrees of freedom. Thus, to reduce the ambiguity the proposed method adopts the step-by-step estimation scheme: a palm pose estimation, a finger yaw motion estimation, and a finger pitch motion estimation, which are performed in consecutive order. Assuming a hand to be a plane, the proposed method utilizes a planar hand model, which facilitates a hand model regeneration. The hand model regeneration modifies the hand model to fit a current user's hand, and improves robustness and accuracy of the tracking results. The proposed method can work in real-time and does not require GPU-based processing. Thus, it can be applied to various platforms including mobile devices such as Google Glass. The effectiveness and performance of the proposed method will be verified through various experiments.

Dubins Path Generation and Tracking of UAVs With Angular Velocity Constraints (각속도 제한을 고려한 무인기의 Dubins 경로 생성 및 추적)

  • Yang, You-young;Jang, Seok-ho;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.121-128
    • /
    • 2021
  • In this paper, we propose a path generation and tracking algorithm of an unmanned air vehicle in a two-dimensional plane given the initial and final points. The path generation algorithm using the Dubins curve proposed in this work has the advantage that it can be applied in real time to an unmanned air vehicle. The path tracking algorithm is an algorithm similar to the line-of-sight induction algorithm. In order to efficiently control the direction angle, a gain related to the look ahead distance concept is introduced. Most of UAVs have the limited maximum curvature due to the structural constraints. A numerical simulation is conducted to follow the path generated by the sliding mode controller considering the angular velocity limit. The path generation and tracking performance is verified by comparing the suggested controller with conventional control techniques.

A study on the design of a path tracker and depth controller for autonomous underwater vehicles (무인 수중운동체의 경로추적기와 심도제어기 설계 연구)

  • Yang, Seung-Yun;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.45-55
    • /
    • 1998
  • In this paper, a robust path tracker and depth controller of Autonomous Underwater Vehicle based on sliding mode control is presented. We have also designed augmented equivalent control inputs by analyzing the sliding mode with the reaching mode. This can enhance the reaching rate, and improve chattering problems, that is, noise caused by the control plane actuator of the vehicle, which is one of the problems that occur when sliding mode control is used. Also to resolve the steady state error generated in the path tracker under current effect, a modified sliding plane is constructed. Also a redesigned sliding plane and control input using transformation matrix is proposed to do easy design of MIMO depth controller. For state variables that cannot be measured directly, reduced order sliding mode control is used to design an observer. The performance of designed path tracker and depth controller is investigated by computer simulation. The results show that the proposed control system has robust performance to parameter variation, modelling error and disturbance.

  • PDF

Development of image tracking technic to moving target (이동중인 표적에 대한 영상추적기법의 개발)

  • 양승윤;이종헌;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.183-186
    • /
    • 1988
  • The problem addressed in this paper is the accurate tracting of a dynamic target using outputs from a forward - looking infrared(FLIR) sensor as measurements. The important variations are 1) the spread of the target intensity pattern in the FLIR image plane, 2) target motion characteristics, and 3) the rms value and both spartial and temporal correlation of the back - ground noise. Based on this insights. design modifications and on - line adaptation copabilities are incorporated to enable this type of filter track highly maneuverable targets such as air-to-air missiles, with spatially distributed and changing image intensity profiles, against, background clutter.

  • PDF

Robust Trajectory Tracking Control of a Mobile Robot Combining PDC and Integral Sliding Mode Control (PDC와 적분 슬라이딩 모드 제어를 결합한 이동 로봇의 강인 궤도 추적 제어)

  • Park, Min-soo;Park, Seung-kyu;Ahn, Ho-kyun;Kwak, Gun-pyong;Yoon, Tae-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1694-1704
    • /
    • 2015
  • In this paper, a robust trajectory tracking control method of a wheeled mobile robot is newly proposed combining the PDC and the ISMC. The PDC is a relatively simple and easy control method for nonlinear system compared to the other non-linear control methods. And the ISMC can have robust and stable control characteristics against model uncertainties and disturbances from the initial time by placing the states on the sliding plane with desired nominal dynamics. Therefore, the proposed PDC+ISMC trajectory tracking control method shows robust trajectory tracking performance in spite of external disturbance. The tracking performance of the proposed method is verified through simulations. Even though the disturbance increases, the proposed method keeps the performance of the PDC method when there is no disturbance. However, the PDC trajectory tracking control method has increasing tracking error unlike the proposed method when the disturbance increases.

Analysis on Candela Distribution Curve of a Tracking Dish Concentrator and Daylighting Prediction using Lighting Programs (조명 소프트웨어를 이용한 추적식 디쉬형 집광기의 배광분포 분석 및 자연채광 성능 예측)

  • Oh, Seung-Jin;Han, Hyeon-Ju;Sin, Sang-Ung;Chun, Won-Gee
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.457-462
    • /
    • 2012
  • Daylighting software is an important component to predict the performance of daylighting system in advance of a field demonstration study with installing them in buildings. PHOTOPIA is a powerful software to generate a candela distribution curve(CDC) of an active daylighting system like a tracking dish concentrator. With PHOTOPIA, a set of candela distribution curves was generated under clear sky conditions and different solar altitude angles. The candela distribution curves were then imported to RADIANCE for rendering and analysis on the daylighting performance of a tracking dish concentrator when it installed in a actual class room without windows. As a result, the daylight collection efficiency of the dish concentrator was 68.4% when we assumed that there was no tracking error. It was found that candela(cd) and total lumens(lm) increased with solar altitude rising, whereas the distribution angle was fixed. The illuminance uniformity on the work plane in the class room was relatively low, 0.12, while the illuminance uniformity on the area of $2.7m^2$ to which the light was illuminated was considerably high, 0.60. The maximum illuminance was 1,340lux with a solar altitude angle of 80 degrees.

  • PDF

Effect of Body Posture on the Rest Position and the Rotational Torque Movement of the Mandible (신체 자세의 변화가 하악의 안정위와 비틀림 회전운동에 미치는 영향)

  • Jung, Seung-Ah;Han, Kyung-Soo;Park, Mi-Sung;Yang, Keun-Young
    • Journal of Oral Medicine and Pain
    • /
    • v.25 no.4
    • /
    • pp.383-394
    • /
    • 2000
  • This study was performed to investigate the effect of change of body posture on the rest position and the rotational torque movement of the mandible. Thirty dental students without any signs and symptoms of temporomandibular disorders and with natural dentition were selected for this study. Cervical inclination and the amount of the mandibular movement on protrusion, on left and right excursion, and on tapping in three body postures such as sitting position, supine position without pillow, and supine position with pillow were measured by goniometer, Cervical-Range-of-$Motion^{(R)}$, and mandibular tracking device, $BioEGN^{(R)}$ with $Rotate!^{(R)}$ program. The data obtained were classified and processed according to body posture and type of lateral guidance with SPSS windows program and the results were as follows: 1. There was significant difference among the three cervical inclinations by body postures. 2. Comparison of mandibular rest positions among body postures showed significant difference only for lateral distance in frontal plane, but comparison between before and after swallowing showed significant difference except for the lateral distance, vice versa. 3. Distance and amount of the rotational torque movement on protrusion and/or lateral excursions didn't show any difference by body posture. But by both body posture and lateral guidance type, there were slightly significant difference for some items. 4. A significant difference was shown for the rotational torque movement in frontal plane on tapping by body postures, for the lateral distance in frontal plane on sitting position by lateral guidance type, and for the rotational torque movement in frontal plane by both body posture and lateral guidance type.

  • PDF