• Title/Summary/Keyword: Plane Rotation

Search Result 434, Processing Time 0.034 seconds

Postoperative Stability and Occlusal Plane Alternation by Orthognathic Surgery of Skeletal Class III Malocclusion with Anterior Open Bite (전치부 개교를 동반한 골격성 III급 부정교합 환자의 악교정 수술 후 교합평면의 변화와 안정성에 관한 연구)

  • Shin, Soo-Jung;Hwang, Byung-Nam;Lee, Jung-Keun;Rhee, Seung-Hoon
    • The korean journal of orthodontics
    • /
    • v.29 no.1 s.72
    • /
    • pp.113-127
    • /
    • 1999
  • The purpose of this study is to investigate the stability of counterclockwise rotation of mandible by sagittal split ramus osteotomy to correct the skeletal Class III malocclusion with anterior open bite. Twenty five skeletal Class III open bite patients(mean age 20.6 years) who were treated by the sagittal split ramus osteotonues with rigid fixation were examined in this study. Cephalometric radiographs were taken for each Patients Preoperative(T1), ewly Postoperative(T2), and late postoperative Period(T3). Mean postoperative period was 8.0 months. Cephalometric analysis was done and data from T1, T2, and T3 were analyzed statistically by Paired t-test and Pearson correlation analysis. The following results were obtained. 1. Mandibular plane angle decreased $2.9^{\circ}$ and mandibular occlusal plane angle related to SN Plane decreased $2.7^{\circ}$ after orthognathic surgery(T2). At 6 months after orthognathic surgery(T3), mandibular plane angle increased $1.0^{\circ}$, but mandibular occlusal plane angle did not changed. 2. The amount of horizontal relapse long time after orthognathic surgery(T3) was 1.6 mm at B point and it was $22\%$ of the total posterior movements. There was no vertical relapse in the anterior facial height. 3. The related factor with horizontal relapse at late postoperative period was mandibular plane angle(p<0.01). The related factors with decreasing posterior facial height were amount of mandibular setback(p<0.01), increasing of mandibular ramus height(p<0.01), and decrease of the mandibular plane angle during operation(p<0.01). 4. There was no relationship between the amount of changes in mandibular occlusal plan angle during operation and the amount of relapse after surgery.

  • PDF

THE EFFECTS OF POSTERIOR RETRACTION ON THE DISPLACEMENT OF THE MAXILLA

  • Yoo, Bo-Yeong;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.26 no.6
    • /
    • pp.691-703
    • /
    • 1996
  • Three-dimensional finite element model was made from adult skull to find desirable direction of retraction force to treat skeletal class II malocclusion. The retraction force of 400g was applied to the first molar. The direction of the force application was $23^{\circ}$ downward, parallel, $23^{\circ}$ upward and $45^{\circ}$ upward to the occlusal plane. The stress distribution and the displacement within the maxilla were analyzed by three-dimensional finite element method. The findings obtained were as follows: 1. Maxillary first molar was displaced posteriorly and inferiorly in $23^{\circ}$ downward, parallel, $23^{\circ}$ upward retraction but it was displaced posteriorly and superiorly in $45^{\circ}$ upward retraction. 2. ANS, A point and prosthion were moved posteriorly and inferiorly and pterygomaxillary fissure was moved posteriorly and superiorly. Clockwise rotation of maxilla occurred when retraction force was applied. 3. The degree of clockwise rotation of maxilla was greatest when the force was applied $23^{\circ}$ upward to the occlusal plane and was least when the force was applied $23^{\circ}$ downward to the occlusal plane. 4. Large tensile stress appeared in maxillary first molar and alveolar bone and the infraorbital region of maxilla when the force was applied $23^{\circ}$ downward to the occlusal plane. Tensile stress was smaller as the direction of force move upward. 5. Large compressive stress was appeared in maxillary first molar and infraorbital region in $45^{\circ}$ upward case and large compressive stress occurred in the posterior part of maxilla as the retraction force was upward.

  • PDF

A Two Mobilized-Plane Model for Soil Liquefaction Analysis (액상화해석을 위한 두 개의 활성면을 가진 구성모델)

  • Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.173-181
    • /
    • 2006
  • A Two Mobilized-Plane Model is proposed for monotonic and cyclic soil response including liquefaction. This model is based on two mobilized planes: a plane of maximum shear stress, which rotates, and a horizontal plane which is spatially fixed. By controlling two mobilized planes, the model can simulate the principal stress rotation effect associated with simple shear from different $K_0$ states. The proposed model gives a similar skeleton behaviour for soils having the same mean stress, regardless of $K_0$ conditions as observed in laboratory tests. The soil skeleton behaviour observed in cyclic drained simple shear tests, including compaction during unloading and dilation at large strain is captured in the model. Undrained monotonic and cyclic response is predicted by imposing the volumetric constraint of the water on the drained or skeleton behaviour. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program of FLAC (Fast Lagrangian Analysis of Continua). The model was first calibrated with drained simple shear tests on Fraser River sand, and verified by comparing predicted and measured undrained behaviour of Fraser River sand using the same input parameters.

Performance and functionality of SRI detector array and focal plane electronics

  • Kim, Young-Sun;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk;Chang, Young-Jun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.804-807
    • /
    • 2006
  • The SRI(Super Resolution Imager) with 800mm aperture primary mirror is the ground development model of the high resolution satellite camera. The SRI focal plane electronics including detector array generates the data for high-resolution images by converting incoming light into digital stream of pixel data. Since the focal plane including a detector is the basic building block of the camera system, the main system performances is directly determined by its performance. This paper measures the SRI focal plane electronics’ performance such as the dark signal, the dark signal noise, the linearity, the PRNU(Photo Response Non-Uniformity), the SNR(Signal to Noise Ratio) and the sensor saturation capability. In addition, this paper verifies the various functionalities of the SRI focal plane electronics. The electrical test equipment with the specialized software and the optical test equipments such as the integrating sphere, the rotation stage and the target are implemented and used to verify these functionalities and performances.

  • PDF

Study on In-Plane Switching mode with discotic compensation film (Discotic 필름 보상형 In-Plane Switching 모드에 관한 연구)

  • Song, I.S.;Baik, I.S.;Jung, B.S.;Jeon, Y.M.;Lee, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.518-521
    • /
    • 2004
  • We have investigated about compensation film to reduce the light leakage at an oblique angle in-plane switching mode. It is well known that uncompensated in-plane switching (US) and fringe field switching (FFS) liquid crystal displays (LCDs) have much better viewing angle than other modes owing to the in-plane rotation of the LC director. However, to accomplish optimal viewing angle characteristics in these devices, they must be compensated by one or more films. So, in this paper, we have studied how to reduce the light leakage with viewing angle using discotic film in dark state.

  • PDF

Omni-directional Mobile Robot for 2D Translation and Rotation of a Puppet using Magnet (줄 인형의 2차원 이동 및 회전을 위한 자석기반 전 방향 로봇시스템)

  • Kim, Byeong-Yeol;Han, Young-Jun;Hahn, Hun-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.326-331
    • /
    • 2010
  • Marionette controlling robot has a problem that generates interference in rotation and intersection, therefore, the research on the independent shifter to move freely on the stage is required. Connecting omni-directional mobile robot with marionette controlling robot can solve this problem. Omni-directional mobile robot makes itself rotate and translate in 2D plane freely. Magnetic device is used to connect the moving part with the control part of the robot to minimize the intereference generated by the movement of robot. When robot moves, it can move to all directions with the suitalbe setting of banlance power. The moment of inertia is minimized by dividing the robot to the upper and lower parts in the marionette performance stage. Rotation and interference problem of independent omni-wheel Robot can be solved by using the permanent magnet. The efficiency and safety of the marionette controlling robot is proved by the experiment.

Motion of rigid unsymmetric bodies and coefficient of friction by earthquake excitations

  • Zadnik, Branko
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.257-267
    • /
    • 1994
  • Motions of an unsymmetric rigid body on a rigid floor subjected to earthquake excitations with special attention to coefficient of friction are investigated. Motions of a body in a plane are classified (Ishiyama 1980) into six types, i.e. (1) rest, (2) slide, (3) rotation, (4) slide rotation, (5) translation jump, (6) rotation jump. Based upon the theoretical and experimental research work special attention is paid to the sliding of a body. The equations of motions and the behavior of coefficient of friction in the time of floor excitation are studied. One of the features of this investigation is the introduction and estimation of the "time dependent" coefficient of friction. It has been established that the constant kinetic coefficient of friction $${\mu}(kin){\sim_\sim}0.8{\mu}(stat)$$ does not give the appropriate results. The method for the estimation of the friction coefficient variation during the time is given.

A method of constructing fuzzy control rules for electric power systems

  • Ueda, Tomoyuki;Ishigame, Atsushi;Kawamoto, Shunji;Taniguchi, Tsuneo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1371-1376
    • /
    • 1990
  • The paper presents a method of constructing simple fuzzy control rules for the determination of stabilizing signals of automatic voltage regulator and governor, which are controllers of electric power systems. Fuzzy control rules are simplified by considering a coordinate transformation with the rotation angle .theta. on the phase plane, and by expanding the range of membership functions. Also, two rotation angles .theta. $_{1}$ and .theta. $_{2}$ are selected for the linearizable region and the nonlinear one of the system, respectively. Here, .theta. $_{1}$ is chosen by the pole assignment method, and .theta. $_{2}$ by a performance index. Fuzzy inference is applied to the connection of two rotation angles .theta. $_{1}$ and .theta. $_{1}$ by regarding the distance from the desired equilibrium point as a variable of condition parts. The control effect is demonstrated by an application of the proposed method to one-machine infinite-bus power system.

  • PDF

Large displacement geometrically nonlinear finite element analysis of 3D Timoshenko fiber beam element

  • Hu, Zhengzhou;Wu, Minger
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.601-625
    • /
    • 2014
  • Based on continuum mechanics and the principle of virtual displacements, incremental total Lagrangian formulation (T.L.) and incremental updated Lagrangian formulation (U.L.) were presented. Both T.L. and U.L. considered the large displacement stiffness matrix, which was modified to be symmetrical matrix. According to the incremental updated Lagrangian formulation, small strain, large displacement, finite rotation of three dimensional Timoshenko fiber beam element tangent stiffness matrix was developed. Considering large displacement and finite rotation, a new type of tangent stiffness matrix of the beam element was developed. According to the basic assumption of plane section, the displacement field of an arbitrary fiber was presented in terms of nodal displacement of centroid of cross-area. In addition, shear deformation effect was taken account. Furthermore, a nonlinear finite element method program has been developed and several examples were tested to demonstrate the accuracy and generality of the three dimensional beam element.

Rough surface characterization using off-axis digital holographic microscopy compensated with self-hologram rotation

  • Ibrahim, Dahi Ghareab Abdelsalam
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1261-1267
    • /
    • 2018
  • In this paper, an off-axis digital holographic microscopy compensated with self-hologram rotation is presented. The process is implemented via subtracting the unwrapped phase maps of the off-axis parabolic hologram and its rotation $180^{\circ}$ to eliminate the tilt induced by the angle between the spherical object wave O and the plane reference wave R. Merit of the proposed method is that it can be done without prior knowledge of physical parameters and hence can reconstruct a parabolic hologram of $1024{\times}768$ pixels within tens of milliseconds since it doesn't require a digital reference wave. The method is applied to characterize rough gold bumps and the obtained results were compared with those extracted from the conventional reconstruction method. The comparison showed that the proposed method can characterize rough surfaces with excellent contrast and in realtime. Merit of the proposed method is that it can be used for monitoring smaller biological cells and micro-fluidic devices.