• Title/Summary/Keyword: Plane Rotation

Search Result 434, Processing Time 0.027 seconds

Cone-beam computed tomographic evaluation of the condylar remodeling occurring after mandibular set-back by bilateral sagittal split ramus osteotomy and rigid fixation

  • Ha, Man-Hee;Kim, Yong-Il;Park, Soo-Byung;Kim, Seong-Sik;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.43 no.6
    • /
    • pp.263-270
    • /
    • 2013
  • Objective: To evaluate condylar head remodeling after mandibular set-back sagittal split ramus osteotomy (SSRO) with rigid fixation in skeletal class III deformities. The correlation between condylar head remodeling and condylar axis changes was determined using cone-beam computed tomography (CBCT) superimposition. Methods: The CBCT data of 22 subjects (9 men and 13 women) who had undergone mandibular set-back SSRO with rigid fixation were analyzed. Changes in the condylar head measurements and the distribution of the signs of condylar head remodeling were evaluated by CBCT superimposition. Results: The subjects showed inward rotation of the axial condylar angle; reduced condylar heights on the sagittal and coronal planes; and resorptive remodeling in the anterior and superior areas on the sagittal plane, superior and lateral areas on the coronal plane, and anterior-middle and anterior-lateral areas on the axial plane (p < 0.05). Conclusions: The CBCT superimposition method showed condylar head remodeling after mandibular set-back SSRO with rigid fixation. In skeletal class III patients, SSRO with rigid fixation resulted in rotation, diminution, and remodeling of the condylar head. However, these changes did not produce clinical signs or symptoms of temporomandibular disorders.

Nonsurgical correction of a severe anterior deep overbite accompanied by a gummy smile and posterior scissor bite using a miniscrew-assisted straight-wire technique in an adult high-angle case

  • Wang, Xue-Dong;Zhang, Jie-Ni;Liu, Da-Wei;Lei, Fei-fei;Zhou, Yan-Heng
    • The korean journal of orthodontics
    • /
    • v.46 no.4
    • /
    • pp.253-265
    • /
    • 2016
  • In the present report, we describe the successful use of miniscrews to achieve vertical control in combination with the conventional sliding MBT$^{TM}$ straight-wire technique for the treatment of a 26-year-old Chinese woman with a very high mandibular plane angle, deep overbite, retrognathic mandible with backward rotation, prognathic maxilla, and gummy smile. The patient exhibited skeletal Class II malocclusion. Orthodontic miniscrews were placed in the maxillary anterior and posterior segments to provide rigid anchorage and vertical control through intrusion of the incisors and molars. Intrusion and torque control of the maxillary incisors relieved the deep overbite and corrected the gummy smile, while intrusion of the maxillary molars aided in counterclockwise rotation of the mandibular plane, which consequently resulted in an improved facial profile. After 3.5 years of retention, we observed a stable, well-aligned dentition with ideal intercuspation and more harmonious facial contours. Thus, we were able to achieve a satisfactory occlusion, a significantly improved facial profile, and an attractive smile for this patient. The findings from this case suggest that nonsurgical correction using miniscrew anchorage is an effective approach for camouflage treatment of high-angle cases with skeletal Class II malocclusion.

Test-retest Reliability and Intratest Repeatability of Measuring Cervical Range of Motion Using Inertial Measurement Unit (관성측정장치를 이용한 경추관절 가동범위 측정의 검사 내 반복성 및 검사-재검사 신뢰도 연구)

  • Kim, Hyun Ho;Kim, Kyung Wook;Park, Ji Min;Kim, Eun Seok;Lee, Min Jun;Kang, Jung Won;Lee, Sang Hoon;Park, Young Bae
    • Journal of Acupuncture Research
    • /
    • v.30 no.4
    • /
    • pp.25-33
    • /
    • 2013
  • Objectives : To assess the test-retest reliability and the intratest repeatability in measuring the cervical range of motion of healthy subjects with wireless microelectromechanical system inertial measurement unit(MEMS-IMU) system and to discuss the feasibility of this system in the clinical setting to evaluate the cervical spine musculoskeletal. Methods : 12 healthy people who were evaluated as no- or mild-disability with neck disability index were participated. Their cervical motion were measured with IMU twice in consecutive two days for the test-retest reliability study. Intratest repeatability was calculated in the two tests separately. The calculated intraclass correlation coefficients(ICC) were discussed and compared with the those of the previous studies. Results : Cervical range of motion data were acquired and statistically processed: left rotation($61.64^{\circ}$), right rotation($65.12^{\circ}$), extension($61.98^{\circ}$), flexion($52.81^{\circ}$), left bending($39.31^{\circ}$), right bending($41.08^{\circ}$). ICCs were 0.77~0.98(intratest repeatability) and 0.74~0.93 (test-retest reliability) in the primary motion. In the coupling motion, intratest repeatability ICCs were 0.93~ 0.99(transverse primary plane), 0.88~0.97(saggital primay plane), and 0.77~0.93(coronal primary plane). Test-retest reliability of coupling motion were 0.90~0.97(transverse primary plane), 0.00~0.72(saggital primary plane), and 0.04~0.76(coronal primary plane). Conclusions : Several types of range-of-motion devices are now on use in many fields including medicine, but the practicality of the devices in clinical use is questionable for the convenient and economical aspects. In this study, we presented the reliability of cervical range of motion test with the developed wireless MEMS-IMU system and discussed its potential utility in clinical use.

Isokinetic Muscle Strength and Muscle Endurance by the Types and Size of Rotator Cuff Tear in Men

  • Kim, In Bo;Kim, Do Keun
    • Clinics in Shoulder and Elbow
    • /
    • v.17 no.4
    • /
    • pp.166-174
    • /
    • 2014
  • Background: Our study was to determine the effect on shoulder isokinetic muscle strength and muscle endurance in isolated full-thickness supraspinatus tendon tear and combined other rotator cuff tear. Methods: Total of 81 male patients (mean age $57.8{\pm}7.4$ years) who were diagnosed as a full-thickness supraspinatus tendon tear were included. They were classified into isolated or combined tear. The isokinetic muscle strength and muscle endurance were measured using the Biodex multi-joint system $PRO^{(R)}$ (Biodex Medical Systems, Shirley, NY, USA) in following movements: shoulder abduction, adduction, flexion, extension, external rotation, and internal rotation. Then, the difference in muscle function according to the type of tears were assessed. Fifty-seven patients had isolated supraspinatus tendon (mean age $56.9{\pm}7.3$ years). They were classified into either anteroposterior tear or modified mediolateral tear. The size were measured using T2-weighted magnetic resonance imaging scans in sagittal plane. Results: Between subjects categorized into the type of tear, we found significant inter-categorical differences in isokinetic muscle strength during abduction, adduction, flexion, extension, and internal rotation, and in muscle endurance during flexion, extension, and internal rotation. Anteroposterior diameter tear, we did not show significant differences in either isokinetic muscle strength or muscle endurance during any movements. However, with modified mediolateral diameter, we found significant differences with isokinetic muscle strength during adduction, and in muscle endurance the external rotation and internal rotation. Conclusions: We found that a supraspinatus tendon tear associated with more numbers of rotator cuff tears has lower isokinetic muscle strength and muscle endurance than a tear found alone.

Direction-of-Arrival Estimation in Broadband Signal Processing : Rotation of Signal Subspace Approach (광대역 신호 처리에서의 도래각 추정 : Rotation of Signal Subspaces 방법)

  • Kim, Young-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.7
    • /
    • pp.166-175
    • /
    • 1989
  • In this paper, we present a method which is based on the concept of the rotation of subspaces. This method is highly related to the angle (or distance) between subspaces arising in many applications. An effective procedures is first derived for finding the optimal transformation matrix which rotates one subspace into another as closely as possible in the least squares sense , and then this algorithm is applied to the solution to general direction-of-arrival estimation problem of multiple broadband plane waves which may be a mixture of incoherent, partially coherent or coherent. In this typical application, the rotation of signal subspaces (ROSS) algorithm is effectively developed to achieve the high performance in the active systems for the case in which the noise field remains invariant with the measurement of the array spectral density matrix (or data matrix). It is not uncommon to observe this situation in sonar systems. The advantage of this techniques is not to require the preliminary processing and spatial prefiltering which is used in Wang-Kaveh's CSS focusing method. Furthermore, the array's geometry is not restricted. Simulation results are presented to illustrate the high performance achieved with this new approach relative to that obtained with Wang-Kaveh's CSS focusing method for incoherent sources and forward-backward spatial smoothed MUSIC for coherent sources including the signal eigenvector method (SEM).

  • PDF

Effects on Muscle Activities around Scapula for Wall Slide and Sling Slide Exercises in Subjects with Scapular Downward Rotation syndrome (월 슬라이드와 슬링 슬라이드 운동이 어깨뼈 아래쪽 돌림 증후군의 어깨뼈 주변 근육의 활성도에 미치는 영향)

  • Lim, Jin-yong;Kim, Byung-kon;Seo, Hyun-kyu
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.22 no.1
    • /
    • pp.51-58
    • /
    • 2016
  • Background: Evidence for effective management of scapular downward rotation syndrome is limited. The present study was performed to compare the scapular muscle activation through 4weeks wall slide exercise and sling slide exercise in subjects with scapular downward rotation syndrome. Methods: Twenty-two subjects with scapular downward rotation syndrome participated in the study. Surface electromyography data were collected from the upper and lower trapezius, serratus anterior and pectoralis major during shoulder flexion of $60^{\circ}$, $90^{\circ}$ and $120^{\circ}$ in the sagittal plane. The alignment of the scapula was measured using radiographic analysis. Subjects were assessed pre and post a 4 weeks exercise (wall slide, sling slide). The significance of the difference in pre- and post-exercise within each groups was assessed using a paired t-test. The significant difference between wall- and sling-exercise was used a independent t-test. Results: In the wall slide group, the muscle activity of upper trapezius decreased significantly during shoulder flexion at $60^{\circ}$, $90^{\circ}$ and $120^{\circ}$ after 4 weeks, and the muscle activity of serratus anterior increased significantly at all angles. Also, the muscle activity of pectoralis major decreased significantly at $90^{\circ}$ and $120^{\circ}$. Conclusions: Based on such results, it can be said that wall slide exercise is effective than sling slide exercise for the subjects with scapular downward rotation syndrome.

  • PDF

Anisotropic Version of Mohr-Coulomb Failure Criterion for Transversely Isotropic Rock (횡등방성 암석의 강도해석을 위한 이방성 Mohr-Coulomb 파괴조건식)

  • Lee, Youn-Kyou;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.174-180
    • /
    • 2011
  • An anisotropic version of Mohr-Coulomb failure criterion is proposed in order to provide a strength criterion for transversely isotropic rock. The concept of fabric tensor introduced by Pietruszczak & Mroz (2001) is employed to define the friction angle and cohesion as scalar functions of the fabric tensors. The anisotroy in these two strength parameters are calculated in association with the consideration of the relative rotation between the principal stress coordinate and the principal material triad. The critical plane on which the anisotropic function maximized is found by an optimization technique based on the Lagrange multiplier method. To demonstrate the performance of the anisotropic failure criterion, conventional triaxial tests on the samples having various inclinations of weakness plane are simulated and the resulting triaxial strength and dip angle of failure plane are discussed.

Plane waves in an anisotropic thermoelastic

  • Lata, Parveen;Kumar, Rajneesh;Sharma, Nidhi
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.567-587
    • /
    • 2016
  • The present investigation is to study the plane wave propagation and reflection of plane waves in a homogeneous transversely isotropic magnetothermoelastic medium with two temperature and rotation in the context of GN Type-II and Type-III (1993) theory of thermoelasticity. It is found that, for two dimensional assumed model, there exist three types of coupled longitudinal waves, namely quasi-longitudinal wave (QL), quasi-transverse wave (QTS) and quasi-thermal waves (QT). The different characteristics of waves like phase velocity, attenuation coefficients, specific loss and penetration depth are computed numerically and depicted graphically. The phenomenon of reflection coefficients due to quasi-waves at a plane stress free with thermally insulated boundary is investigated. The ratios of the linear algebraic equations. These amplitude ratios are used further to calculate the shares of different scattered waves in the energy of incident wave. The modulus of the amplitude and energy ratios with the angle of incidence are computed for a particular numerical model. The conservation of energy at the free surface is verified. The effect of energy dissipation and two temperatures on the energy ratios are depicted graphically and discussed. Some special cases of interest are also discussed.

Visualization of Surface Deformation on an Open-Hole Specimen Based on Grating Shearography

  • Lee, Jung-Ryul;Lee, Seung-Seok;Chung, Won-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.563-575
    • /
    • 2007
  • This contribution contained the classical work of an open-hole tensile plate to demonstrate the performance of grating shearography and to compare with the results obtained by other full-field measurement techniques, The isotropic plate with an open-hole has often appeared in the previous contributions introducing novel full-field method and system. Grating shearography directly provided six quantitative measurands about the specimen's surface kinematics by using a single measurement set: three in-plane strains, in plane rotation, and two out-of-plane slopes. The quasi-plane wavefront of grating metrology led to high signal-to-noise ratio (SNR) and thus neither fitting nor filtering was applied, and the small shearing distance of $101{\mu}m$ could be used. The small shearing distance provided the outstanding spatial resolution of $80{\mu}m$ and sensitivity appropriate for experimental mechanics. Finally, the grating shearography enabled the visualization of the complex surface deformation around the hole and also detected parasitic flexions of the specimen in the micrometer regime during the tensile test.

Vibration Control of Large Scale Structure with Beam-End Rotation Type Friction Damper (보단부 회전형감쇠기를 이용한 대형구조물의 진동제어)

  • Lee, Sang-Hyun;Woo, Sung-Sik;Chung, Lan;Cho, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.452-458
    • /
    • 2007
  • The vertical extension of a building in general remodeling process increases both gravity and seismic loads by simply adding masses to the building. In this study, a vertical extension structural module (VESM) is proposed for enhancing seismic performance of the existing buildings by utilizing the story-increased parts. The proposed VESM is composed of steel column, steel beam, and beam-end rotational damper. The steel columns are connected to the shear walls and transfer the wall rotation in out-of plane to the steel beam, and then the beam-end rotational damper dissipates the earthquake-induced energy. Numerical analysis result from a cantilever beam of which end-rotation is restricted by rotational damper indicates that the displacement, base shear, and base overturning moment of the existing structures showing cantilever behavior can be significantly reduced by using the proposed method. Also, it is observed that friction-type rotational damper is effective than viscous one.

  • PDF