• Title/Summary/Keyword: Planctomycetes

Search Result 31, Processing Time 0.03 seconds

Detection and Potential Abundances of Anammox Bacteria in the Paddy Soil

  • Khanal, Anamika;Lee, Seul;Lee, Ji-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.26-35
    • /
    • 2020
  • BACKGROUND: Microbes that govern a unique biochemical process of oxidizing ammonia into dinitrogen gas, such as anaerobic ammonium oxidation (anammox) have been reported to play a pivotal role in agricultural soils and in oceanic environments. However, limited information for anammox bacterial abundance and distribution in the terrestrial habitats has been known. METHODS AND RESULTS: Phylogenetic and next-generation sequencing analyses of bacterial 16S rRNA gene were performed to examine potential anammox bacteria in paddy soils. Through clone libraries constructed by using the anammox bacteria-specific primers, some clones showed sequence similarities with Planctomycetes (87% to 99%) and anammox bacteria (94% to 95%). Microbial community analysis for the paddy soils by using Illumina Miseq sequencing of 16S rRNA gene at phylum level was dominated by unclassified Bacteria at 33.2 ± 7.6%, followed by Chloroflexi at 20.4 ± 2.0% and Acidobacteria at 17.0 ± 6.5%. Planctomycetes that anammox bacteria are belonged to was 1.5% (± 0.3) on average from the two paddy soils. CONCLUSION: We suggest evidence of anammox bacteria in the paddy soil. In addition to the relatively well-known microbial processes for nitrogen-cycle, anammox can be a potential contributor on the cycle in terrestrial environments such as paddy soils.

Comparative Study of Soil Bacterial Populations in Human Remains and Soil from Keundokgol Site at Buyeo (부여 큰독골 유적 출토 인골 조직 및 외부 토양의 세균 군집의 비교연구)

  • Kim, Yun-ji;Kim, Sue-hoon;Kwon, Eun-sil;Cho, Eun-min;Kang, So-yeong
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.4
    • /
    • pp.92-105
    • /
    • 2014
  • Microbial characteristics of bacterial population were investigated in human remains and soil inside the bones in excavated grave no.4 and no.5 at Keundokgol site, Osu-ri, Buyeo. Phylogenetic characteristics of bacterial populations were analyzed by direct extracting of ancient DNA. In this study, based on the 16S rDNA sequences, in case of grave no.4, 319s from human remain were classified into 11 phyla, and 462s from soil were classified into 16 phyla. In case of grave no.5, 271s from human remain were classified into 10 phyla, and 497s from soil were classified into 11 phyla. Especially, Actinobacteria phylogenetic group are dominant group of bacterial populations in grave no.4 and no.5. Also, most of these were analyzed uncultured group. Thus, the discovery of a diversely microbial community and uncultured group was thought to be due to the specificity of the sample. Conclusively the general excavated human bones were contaminated with soil bacteria species their near around. This results contribute to preservation and management of ancient human bone from archaeological sites.

Bacterial Communities from the Water Column and the Surface Sediments along a Transect in the East Sea

  • Lee, Jeong-Kyu;Choi, Keun-Hyung
    • Journal of Marine Life Science
    • /
    • v.6 no.1
    • /
    • pp.9-22
    • /
    • 2021
  • We determined the composition of water and sediment bacterial assemblages from the East Sea using 16S rRNA gene sequencing. Total bacterial reads were greater in surface waters (<100 m) than in deep seawaters (>500 m) and sediments. However, total OTUs, bacterial diversity, and evenness were greater in deep seawaters than in surface waters with those in the sediment comparable to the deep sea waters. Proteobacteria was the most dominant bacterial phylum comprising 67.3% of the total sequence reads followed by Bacteriodetes (15.8%). Planctomycetes, Verrucomicrobia, and Actinobacteria followed all together consisting of only 8.1% of the total sequence. Candidatus Pelagibacter ubique considered oligotrophic bacteria, and Planctomycetes copiotrophic bacteria showed an opposite distribution in the surface waters, suggesting a potentially direct competition for available resources by these bacteria with different traits. The bacterial community in the warm surface waters were well separated from the other deep cold seawater and sediment samples. The bacteria exclusively associated with deep sea waters was Actinobacteriacea, known to be prevalent in the deep photic zone. The bacterial group Chromatiales and Lutibacter were those exclusively associated with the sediment samples. The overall bacterial community showed similarities in the horizontal rather than vertical direction in the East Sea.

Investigation of Microbial Communities in the Anammox Reactor Seeded with Sewage Sludge and Anaerobic Granule (하수 슬러지와 혐기성 입상슬러지를 식종한 혐기성 암모니아 산화 반응기의 미생물 탐색)

  • Park, Kyung-Soon;Bae, Hyokwan;Chung, Yun-Chul;Park, Yong Keun;Jung, Jin-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.397-402
    • /
    • 2007
  • Anammox reactor seeded with sewage sludge from RBC reactor and anaerobic granule from full-scale UASB reactor treating distillery wastewater was operated. Mixed granule and suspended sludge in the ammonium oxidizing process were taken and analyzed to investigate microbial community structure by molecular methods such as gene cloning and phylogenetic tree analysis after 250 days of continuous cultivation. The average nitrogen removal rate showed $0.9kg\;N/m^3-day$ after 250 days of continuous operation, then the maximum nitrogen removal rate showd $1.9kg\;N/m^3-day$ when $2.1kg\;N/m^3-day$ of nitrogen loading rate was applied. As results of gene cloning and phylogenetic tree analysis, Three kinds of phylum were found to be Proteobacteria, Acidobacteria and Planctomycetes (anammox bacteria) in mixed granule. Five kinds of phylum were found to be Proteobacteria, Chlorobi, Planctomycetes, Nitrospirae and Verrucomicrobia in suspended sludge. We found planctomycete KSU-1 and putative new anammox bacteria in the reactor. Microbial structure represented different consortia depending on the types of sludge in the anammox reactor.

Characteristics of Bacteria in the Living Room and Bathroom of a Residential Environment Using the Pyrosequencing Method (파이로시퀀싱 분석법을 이용한 주거 환경 중 거실과 화장실의 세균 특성)

  • Lee, Siwon;Chung, Hyen-Mi;Park, Eung-Roh
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.1
    • /
    • pp.84-88
    • /
    • 2016
  • In this study, bacterial diversity in the living room and bathroom of a residential environment was analyzed using the pyrosequencing method. There was no difference in the diversity index of bacteria between the 2 rooms; however, differences were noted in the composition of bacteria. The classes ${\beta}$-Proteobacteria and ${\delta}$-Proteobacteria were found in the bathroom at higher abundances than in the living room. The phyla Acidobacteria, Chlorobi, Chloroflexi, Fusobacteria, Nitrospirae, and Planctomycetes were found in the bathroom, but not in the living room, indicating a broader range of bacteria. However, the living room showed a more diverse range of bacterial genera than the bathroom did. In both the living room and the bathroom, the genus Methylobacterium was dominant.

Evaluating the Impacts of Long-Term Use of Agricultural Chemicals on a Soil Ecosystem by Structural Analysis of Bacterial Community (세균군집의 구조분석을 통한 장기간 농약사용이 토양생태계에 미치는 영향 평가)

  • Yun, Byeong-Jun;Kim, Seong-Hyeon;Lee, Dong-Heon;O, Gye-Heon;Gang, Hyeong-Il
    • Korean Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.260-266
    • /
    • 2003
  • In this study bacterial community was analyzed to evaluate the impacts of long-term use of agricultural chemicals on a soil ecosystem as well as to obtain fundamental data on the relationship. Sequences of 16S rRNA clones from a non-agricultural site and a tangerine orchard soil which has a history of long-term use of agricultural chemicals over 30 years were analyzed. This revealed that bacterial community containing 5 divisions and 18 genera was distributed in a tangerine orchard soil, while bacterial community containing 9 divisions and 44 genera was distributed. In a tangerine orchard soil site, the most abundant bacteria in subdivision level were placed into Proteobacteria γ group which occupied 56% of total clones. The other bacterial clones from the ocrhcard soil exposed to agricultural chemicals over 30 years were Acidobacteria group (25%), Fimicutes group (5%), Planctomycetes group (2%), Proteobacteria α (1%), δ group (1%), and Cyanobacteria group (1%). Whereas, the clones were from the non-agricultural site were distributed among the division or subdivision Acidobacteria group (14%), Planctomycetes group (13%), Proteobacteria α (10%), β (9%), δ (9%), Fimicutes group (8%), Verrucomicrobia group (8%), Actinobacteria group (6%), Proteobacteria γ group (3%), Bacteroidetes group (3%), Gemmatimonadetes group (3%), and Cyanobacteria group (1%). This finding suggests the possibility that long-term application of agricultural chemicals or fertilizers on a tangerine orchard might result in drastic reduction or alteration in the composition of the bacterial community in the contaminated soil site.

Comparison of Phylogenetic Characteristics of Viable but Non-Culturable (VBNC) Bacterial Populations in the Pine and Quercus Forest Soil by 16S rDNA-ARDRA (16S rDNA-ARDRA법을 이용한 소나무림과 상수리나무림 토양 내 VBNC 세균군집의 계통학적 특성 비교)

  • Han Song-Ih;Kim Youn-Ji;Whang Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.116-124
    • /
    • 2006
  • In this study was performed to analyze quantitatively the number of viable but non-culturable bacteria in the Pine and Quercus forest soil by improved direct viable count (DVC) and plate count (PC) methods. The number of living bacteria of Pine and Quercus forest soil by PC method were less then 1% of DVC method. This result showed that viable but non-culturable (VBNC) bacteria existed in the forest soil with high percentage. Diversity and structure of VBNC bacterial populations in forest soil were analyzed by direct extracting of DNA and 16S rDNA-ARDRA from Pine and Quercus forest soil. Each of them obtained 111 clones and 108 clones from Pine and Quercus forest soil. Thirty different RFLP types were detected from Pine forest soil and twenty-six different RFLP types were detected from Quercus forest soil by HeaIII. From ARDRA groups, dominant clones were selected for determining their phylogenetic characteristics based on 16S rDNA sequence. Based on the 16S rDNA sequences, dominant clones from ARDRA groups of Pine forest soil were classified into 7 major phylogenetic groups ${\alpha}$-proteobacteria (12 clones), ${\gamma}$-proteobacteria (3 clones), ${\delta}$-proteobacteria (1 clone), Flexibacter/Cytophaga (1 clone), Actinobacteria (4 clones), Acidobacteria (4 clones), Planctomycetes (5 clones). Also, dominant clones from ARDRA groups of Quercus forest soil were classified into 6 major phylogenetic groups : ${\alpha}$-proteobacte,ia (4clones), ${\gamma}$-proteobacteria (2 clones), Actinobacteria (10 clones), Acidobacteria (8 clones), Planctomycetes (1 clone), and Verrucomicobia (1 clone). Result of phylogeneric analysis of microbial community from Pine and Quercus forest soils were mostly confirmed at uncultured or unidentified bacteria, VBNC bacteria of over 99% existent in forest soil were confirmed variable composition of unknown micro-organism.

Soil Bacterial Community in Red Pine Forest of Mt. Janggunbong, Bonghwa-Gun, Gyeongbuk, Korea, Using Next Generation Sequencing (차세대염기서열방법을 이용한 경북 봉화군 장군봉 소나무림의 토양 박테리아 군집 구성)

  • Lee, Byeong-Ju;Eo, Soo Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.2
    • /
    • pp.121-129
    • /
    • 2017
  • The soil microbiome plays important roles in material cycling and plant growth in forest ecosystem. Although a lot of researches on forest soil fungi in Korea have been performed, the studies on forest soil bacterial communities have been limited. In this study, we conducted next generation sequencing (NGS) targeting 16S rRNA gene to investigate the soil bacterial communities from natural red pine (Pinus densiflora) forest in Mt. Janggunbong, Bonghwa-gun, Gyeongbuk, Korea. Our results showed that the entire bacterial communities in the study sites include the phyla Proteobacteria, Acidobacteria, Actinobacteria, Planctomycetes, which have been typically observed in forest soils. The composition ratio of Proteobacteria was the highest in the soil bacteria community. The results reflect that Proteobacteria is copiotroph, which generally favors relatively nutrient-rich conditions with abundant organic matter. Some rhizobia species such as Burkholderia, Bradyrhizobium, Rhizobium, which are known to contribute to soil nitrogen-fixation, exist in the study sites. As a result of correlation analysis between soil physicochemical characteristics and bacteria communities, the soil pH was significantly correlated with the soil bacteria compositions.

Comparison of the Phylogenetic Diversity of Humus Forest Soil Bacterial Populations via Different Direct DNA Extyaction Methods (DNA 직접추출법에 따른 산림토양 부식층 내 세균군집의 계통학적 다양성 비교)

  • Son, Hee-Seong;Han, Song-Ih;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.210-216
    • /
    • 2007
  • The principal objective of this study was to analyze 16S rDNA-ARDRA of the humus forest soil via an improved manual method and an ISOIL kit on the basis of the UPGMA clustering of the 16S rDNA combined profile, 44 ARDRA clusters of 76 clones via the ISOIL kit method and 45 ARDRA clusters of 136 clones via the improved manual method. On the basis of the 16S rDNA sequences, 44 clones from the ARDRA clusters by the ISOIL kit were classified into 3 phyla : ${\alpha}-,\;{\beta}-,\;{\gamma}-,\;{\delta}-Proteobacteria$, Acidobacteria and Actinobacteria. Using the improved manual method, the specimens were classified into 6 phyla : the ${\alpha}-,\;{\beta}-,\;{\gamma}-,\;{\delta}-Proteobacteria$, Acidobacteria, Bacteroides, Verrucomicrobia, Planctomycetes and Gemmatomonadetes. As a result, the modified manual method indicated greater phylogenetic diversity than was detected by the ISOIL kit. Approximately 40 percent of the total clones were identified as ${\alpha}-Proteobacteria$ and 30 percent of the total clones were ${\gamma}-Proteobacteria$ and assigned to dominant phylogenetic groups using the ISOIL kit. Using the modified manual method, 41 percent of the total clones were identified as Acidobacteria and 28 percent of total clones were identified as ${\alpha}-proteobacteria$ and assigned to dominant phylogenetic groups.

Qualitative and Quantitative Analysis of Microbial Community Structure in the Sequencing Batch Reactor for Enriching ANAMMOX Consortium (연속회분식 반응기를 이용한 혐기성 암모늄 산화균 농후배양에서의 정성 및 정량적 미생물 군집구조 분석)

  • Bae, Hyo-Kwan;Jung, Jin-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.919-926
    • /
    • 2009
  • Enrichment of anaerobic ammonium oxidation (ANAMMOX) bacteria is the essential step for operating full-scale ANAMMOX bioreactor because adding a significant amount of seeding sludge is required to stabilize the ANAMMOX reactor. In this study, the enrichment of ANAMMOX bacteria from an activated sludge using sequencing batch reactor was conducted and verified by analyzing changes in the microbial community structure. ANAMMOX bacteria were successfully enriched for 70 days and the substrate removal efficiencies showed 98.5% and 90.7% for $NH_4\;^+$ and $NO_2\;^-$ in the activity test, respectively. The phylogenetic trees of Planctomycetes phylum showed that the diverse microbial community structure of an activated sludge was remarkably simplified after the enrichment. All 36 clones, obtained after the enrichment, were affiliated with ANAMMOX bacteria of Candidatus Brocadia (36%) and Candidatus Anammoxoglobus (64%) genera. The quantification using real-time quantitative PCR (RTQ-PCR) revea ed that the 16S rDNA concentration of ANAMMOX bacteria was 74.8% compared to the granular ANAMMOX sludge obtained from an upflow ANAMMOX sludge bed reactor which had been operated for more than one year. The results of molecular analysis supported that the enriched sludge could be used as a seeding sludge for a full-scale ANAMMOX bioreactor.