• 제목/요약/키워드: Plancherel's formula

검색결과 2건 처리시간 0.018초

TIME-FREQUENCY ANALYSIS ASSOCIATED WITH K-HANKEL-WIGNER TRANSFORMS

  • Boubatra, Mohamed Amine
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.521-535
    • /
    • 2022
  • In this paper, we introduce the k-Hankel-Wigner transform on R in some problems of time-frequency analysis. As a first point, we present some harmonic analysis results such as Plancherel's, Parseval's and an inversion formulas for this transform. Next, we prove a Heisenberg's uncertainty principle and a Calderón's reproducing formula for this transform. We conclude this paper by studying an extremal function for this transform.

THE HARMONIC ANALYSIS ASSOCIATED TO THE HECKMAN-OPDAM'S THEORY AND ITS APPLICATION TO A ROOT SYSTEM OF TYPE BCd

  • Trimeche, Khalifa
    • Korean Journal of Mathematics
    • /
    • 제27권1호
    • /
    • pp.221-267
    • /
    • 2019
  • In the five first sections of this paper we define and study the hypergeometric transmutation operators $V^W_k$ and $^tV^W_k$ called also the trigonometric Dunkl intertwining operator and its dual corresponding to the Heckman-Opdam's theory on ${\mathbb{R}}^d$. By using these operators we define the hypergeometric translation operator ${\mathcal{T}}^W_x$, $x{\in}{\mathbb{R}}^d$, and its dual $^t{\mathcal{T}}^W_x$, $x{\in}{\mathbb{R}}^d$, we express them in terms of the hypergeometric Fourier transform ${\mathcal{H}}^W$, we give their properties and we deduce simple proofs of the Plancherel formula and the Plancherel theorem for the transform ${\mathcal{H}}^W$. We study also the hypergeometric convolution product on W-invariant $L^p_{\mathcal{A}k}$-spaces, and we obtain some interesting results. In the sixth section we consider a some root system of type $BC_d$ (see [17]) of whom the corresponding hypergeometric translation operator is a positive integral operator. By using this positivity we improve the results of the previous sections and we prove others more general results.