• Title/Summary/Keyword: Planar structure

Search Result 817, Processing Time 0.026 seconds

Two Crystal Structures of $Tl^+$ and $Zn^{2+}$ Exchanged Zeolite A, $Tl_{12-2x}Zn_x-A$ (x=4.3 and 3.25)

  • Mi Suk Jeong;Seong Hwan Song;Young Wook Han;Yang Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.150-154
    • /
    • 1990
  • The structures of $Tl_{12-2x}Zn_x-A$ (x = 4.3 and 3.25), vacuum dehydrated zeolite A with all $Na^+$ ions replaced by $Tl^+$ and $Zn^{2+}$ as indicated, have been determined by single-crystal X-ray diffraction techniques in cubic space group Pm3m at 21(1) $^{\circ}C$ (a=12.100(2) ${\AA}$ for $Tl_{3.4}Zn_{4.3}-A$ and a=12.092(2) ${\AA}$ for $Tl_{5.5}Zn_{3.25}-A$). The crystals of $Tl_{3.4}Zn_{4.3}-A$ and $Tl_{5.5}Zn_{3.25}-A$ were prepared by flow method using exchange solutions in which mole ratios of $TlNO_3$,/TEX> and $Zn(NO_3)_2$ were 1:50 and 1:1, respectively, with total concentration of 0.05 M. The structures of the dehydrated $Tl_{3.4}Zn_{4.3}-A$ and $Tl_{5.5}Zn_{3.25}-A$ were refined to yield the final error indices $R_1$ = 0.075 and $R_2$ = 0.075 with 236 reflections, and $R_1$ = 0.057 and $R_2$ = 0.064 with 202 reflections, respectively, for which I > 3$\sigma$(I). Both structures indicate that Zn(II) ions are coordinated by three framework oxygens: the Zn(II) to O(3) distances are 2.08(1) ${\AA}$ for $Tl_{3.4}Zn_{4.3}-A$ and 2.07(1) ${\AA}$ for $Tl_{5.5}Zn_{3.25}-A$, respectively. In each structure, the angle subtended at Zn(II), O(3)-Zn(II)-O(3) is 119.9(3)$^{\circ}$ for $Tl_{3.4}Zn_{4.3}-A$, and 120.0(3)$^{\circ}$ for $Tl_{5.5}Zn_{3.25}-A$, respectively, close to the idealized trigonal-planar value. Zn(II) ions prefer to 6-ring sites. $Tl^+$ ions do not have any preference to a particular site but occupy simultaneously both at the 6-ring sites and 8-ring sites.

Development of jigs for planar measurement with DIC and determination of magnesium material properties using jigs (마그네슘 합금 판재의 평면 DIC 측정을 위한 지그 개발과 이를 활용한 단축 변형 특성 분석)

  • Kang, Jeong-Eun;Yoo, Ji-Yoon;Choi, In-Kyu;YU, Jae Hyeong;Lee, Chang-Whan
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.23-29
    • /
    • 2021
  • The specific strength of magnesium alloy is four times that of iron and 1.5 times that of aluminum. For this reason, its use is increasing in the transportation industry which is promoting weight reduction. At room temperature, magnesium alloy has low formability due to Hexagonal closed packed (HCP) structure with relatively little slip plane. However, as the molding temperature increases, the formability of the magnesium alloy is greatly improved due to the activation of other additional slip systems, and the flow stress and elongation vary greatly depending on the temperature. In addition, magnesium alloys exhibit asymmetrical behavior, which is different from tensile and compression behavior. In this study, a jig was developed that can measure the plane deformation behavior on the surface of a material in tensile and compression tests of magnesium alloys in warm temperature. A jig was designed to prevent buckling occurring in the compression test by applying a certain pressure to apply it to the tensile and compression tests. And the tensile and compressive behavior of magnesium at each temperature was investigated with the developed jig and DIC equipment. In each experiment, the strain rate condition was set to a quasi-static strain rate of 0.01/s. The transformation temperature is room temperature, 100℃. 150℃, 200℃, 250℃. As a result of the experiment, the flow stress tended to decrease as the temperature increased. The maximum stress decreased by 60% at 250 degrees compared to room temperature. Particularly, work softening occurred above 150 degrees, which is the recrystallization temperature of the magnesium alloy. The elongation also tended to increase as the deformation temperature increased and increased by 60% at 250 degrees compared to room temperature. In the compression experiment, it was confirmed that the maximum stress decreased as the temperature increased.

Evaluation of Floor Acceleration for the Seismic Design of Non-Structural Elements according to the Core Shape (코어형태에 따른 비구조요소 내진설계를 위한 층가속도 평가)

  • Ki, Ho-Seok;Hong, Gi-Suop
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • In this paper, the floor acceleration for the seismic design of non-structural elements was evaluated using the core shape as a planar variable. Linear time history analysis using 20 models with 5 different planes and 4 different floors on each plane depending on the change in the shape (position and specific gravity) of the core in the square biaxially symmetric plane was performed. The analysis confirmed that the torsional amplification of the floor acceleration was up to 1.7 times in the plane subjected to eccentricity depending on the position of the core, and the effect of torsion was the greatest in the middle floor of the structure. In a plane where only the specific gravity of the core was changed without eccentricity, when the period was less than 0.4694 s, the maximum floor acceleration decreased in the lower floors and increased in the upper floors as the period increased. Conversely, when the period was 0.4694 s or more, it was confirmed that the floor acceleration increased in the lower part and decreased in the upper part as the period increased.

Application of Depth Resolution and Sensitivity Distribution of Electrical Resistivity Tomography to Modeling Weathered Zones and Land Creeping (전기비저항 깊이분해능 및 감도분포: 풍화층 및 땅밀림 모델에 대한 적용)

  • Kim, Jeong-In;Kim, Ji-Soo;Ahn, Young-Don;Kim, Won-Ki
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.157-171
    • /
    • 2022
  • Electrical resistivity tomography (ERT) is a traditional and representative geophysical method for determining the resistivity distributions of surrounding soil and rock volumes. Depth resolution profiles and sensitivity distribution sections of the resistivities with respect to various electrode configurations are calculated and investigated using numerical model data. Shallow vertical resolution decreases in the order of Wenner, Schlumberger, and dipole-dipole arrays. A high investigable depth in homogeneous medium is calculated to be 0.11-0.19 times the active electrode spacing, but is counterbalanced by a low vertical resolution. For the application of ERT depth resolution profiles and sensitivity distributions, we provide subsurface structure models for two types of land-creping failure (planar and curved), subvertical fracture, and weathered layer over felsic and mafic igneous rocks. The dipole-dipole configuration appears to be most effective for mapping land-creeping failure planes (especially for curved planes), whereas the Wenner array gives the best resolution of soil horizons and shallow structures in the weathered zone.

Catalytic Effects on Graphitized Carbon Fibers of Graphitization Catalysts Introduced during Hot-Water Stretching (열수 연신시 흑연화 촉매 도입에 따른 탄소섬유의 흑연화 촉진효과)

  • Hyun-Jae Cho;Hye Rin Lee;Byoung-Suhk, Kim;Yong-Sik, Chung
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.162-169
    • /
    • 2024
  • In this study, PAN(polyacrylonitrile)-based precursor fibers were produced through a wet-spinning process, and their morphologies and graphitization behavior were investigated in the presence of two graphitization catalysts (Ca, Ni). The graphitization catalysts were introduced into the formed pores during hot-water stretching of wet-spun PAN-based precursor fibers. The catalytic effects of graphitization catalysts were examined through crystal structure and Raman analysis. At a relatively low temperature of 1500℃, the graphitization was not significantly affected, whereas at a high temperature of 2400℃, the obtained ID/IG value of graphite fiber (GF-Ni100) was decreased by about twice (~0.28) compared to the untreated fibers (GF-AS~0.54). By comparing the ID/IG values (GF-Ca100~0.42: GF-Ni100~0.28) of Ca and Ni graphitization catalyst, it was found that the degree of graphitization of Ni graphitization catalyst showed higher influence than that of Ca graphitization catalyst. Moreover, 2D band was also observed, indicating that the graphite plane structures composed of multiple layers were developed. XRD results confirmed that the crystal inter-planar distance (d002) of the graphite crystal was slightly decreased after the treatment with the graphitization catalyst, But, the crystal size of Ca-treated graphite fiber (GF-Ca100) was increased by up to ~5 nm.

Effects of Ventilation Systems on Interior Environment of the Growing-finishing Pig House in Korea (육성$\cdot$비육돈사 내에서 환기형태별 환경조사 연구)

  • Song J. I.;Yoo Y. H.;Jeong J. W.;Kim T. I.;Choi H. C.;Kang H. S.;Yang C. B.;Lee Y. Y.
    • Journal of Animal Environmental Science
    • /
    • v.10 no.2
    • /
    • pp.93-100
    • /
    • 2004
  • An experiment was conducted to establish comparison of ventilation efficiency in an enclosed and conventional growing-finishing pig house. The experimental pigs were in winter and summer. The main results of the experiment are as follows : Then the air from planar slot inlet the pig house flow out through the sidewall outlet operated by exhaust fan(Gl). The second structure has an air input through the circular duct inlet are plated side the juncture of the entering wall and the air into the pig house flow out through the chimney and pit outlet are operated by exhaust fan(G2). Through the air into relay fan the pig house flow out through the curtains in sidewall(G3). Similarly, air comes in through the circular duct inlet are placed the air into the pig house flow out through the curtains in sidewall (G4). Air flow rate on the floor level which is the low part of pen and the living area of pigs in the G2 and G4 system during winter was measured at 0.2 to 0.3 m/s at the 0.5 to 0.6 m/s at the maximum ventilation efficiency. As for the results of detrimental gas(ammonia) concentration ratio analysis, while G2 and G4 system sustained of summer 13.3 $\~$ 16.6 ppm, winter 14.0 $\~$ 14.6 ppm level, Gl and G3 system sustained of summer 14.6 $\~$ 20.3 ppm, winter 20.3 $\~$ 25.0 ppm, and the latter one is lower than that of the G1 and G3 system.

  • PDF

Characteristics and Distribution Pattern of Carbonate Rock Resources in Kangwon Area: The Gabsan Formation around the Mt. Gachang Area, Chungbuk, Korea (강원 지역에 분포하는 석회석 자원의 특성과 부존환경: 충북 가창산 지역의 갑산층을 중심으로)

  • Park, Soo-In;Lee, Hee-Kwon;Lee, Sang-Hun
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.437-448
    • /
    • 2000
  • The Middle Carboniferous Gabsan Formation is distributed in the Cheongrim area of southern Yeongwol and the Mt. Gachang area of Chungbuk Province. This study was carried out to investigate the lithological characters and geochemical composition of the limestones and to find out controlling structures of the limestones of the formation. The limestones of the Gabsan Formation are characterized by the light gray to light brown in color and fine and dense textures. The limestone grains are composed of crinoid fragments, small foraminfers, fusulinids, gastropods, ostracods, etc. Due to the recrystallization, some limestones consist of fine crystalline calcites. The chemical analysis of limestones of the formation was conducted to find out the contents of CaO, MgO, Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$. The content of CaO ranges from 49.78-60.63% and the content of MgO ranges from 0.74 to 4.63% The contents of Al$_2$O$_3$ and Fe$_2$O$_3$ are 0.02-0.55% and 0.02${\sim}$0.84% , respectively. The content of SiO$_2$ varies from 1.55 to 4.80%, but some samples contain more than 6.0%. The limestones of the formation can be grouped into two according to the CaO content: One is a group of which CaO content ranges from 49.78 to 56.26% and the other is a group of which CaO content varies from 59.36 to 60.38%. In the first group, the contents of Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$ range very irregularly according to the CaO content. In the second group, the values of MgO, Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$ are nearly same. Detailed structural analysis of mesoscopic structures and microstructures indicates the five phase of deformation in the study area. The first phase of deformation(D$_1$) is characterized by regional scale isoclinal folds, and bedding parallel S$_1$ axial plane foliation which is locally developed in the mudstone and sandstone. Based on the observations of microstructures, S$_1$ foliations appear to be developed by grain preferred orientation accompanying pressure-solution. During second phase of deformation, outcrop scale E-W trending folds with associated foliations and lineations are developed. Microstructural observations indicate that crenulation foliations were formed by pressure-solution, grain boundary sliding and grain rotation. NNW and SSE trending outcrop scale folds, axial plane foliations, crenulation foliations, crenulation lineations, intersection lineations are developed during the third phase of deformation. On the microscale F$_3$ fold, axial plane foliations which are formed by pressure solution are well developed. Fourth phase of deformation is characterized by map scale NNW trending folds. The pre-existing planar and linear structures are reoriented by F$_4$ folds. Fifth phase of deformation developed joints and faults. The distribution pattern of the limestones is mostly controlled by F$_1$ and F$_4$ folds.

  • PDF