• Title/Summary/Keyword: Planar motor

Search Result 57, Processing Time 0.019 seconds

Investigation of Soot Formation in a D.I. Diesel Engine by Using Laser Induced Scattering and Laser Induced Incandescence

  • Lee, Ki-Hyung;Chung, Jae-Woo;Kim, Byung-Soo;Kim, Sang-Kwon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1169-1176
    • /
    • 2004
  • Soot has a great effect on the formation of PM (Particulate Matter) in D.I. (Direct Injection) Diesel engines. Soot in diesel flame is formed by incomplete combustion when the fuel atomization and mixture formation were poor. Therefore, the understanding of soot formation in a D.I. diesel engine is mandatory to reduce PM in exhaust gas. To investigate soot formation in diesel combustion, various measurements have been performed with laser diagnostics. In this study, the relative soot diameter and the relative number density in a DJ. engine was measured by using LIS (Laser Induced Scattering) and LII (Laser Induced Incandescence) methods simultaneously which are planar imaging techniques. And a visualization D.I. diesel engine was used to introduce a laser beam into the combustion chamber and investigate the diffusion flame characteristics. To find the optimal condition that reduces soot formation in diesel combustion, various injection timing and the swirl flow in the cylinder using the SCV (Swirl Control Valve) were applied. From this experiment, the effects of injection timing and swirl on soot formation were established. Effective reduction of soot formation is possible through the control of these two factors.

Microfactory for Electro-Chemical Machining (마이크로 전기${\cdot}$화학 복합형상 제거시스템)

  • Lee H.W.;Kook K.H.;Kim K.W.;Kim T.G.;Ryu B.H.;Jung J.W.;Han M.S.;Jung Y.H.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.389-394
    • /
    • 2005
  • Microfactory is effective method for machining micro size component. Electro-chemical machining can be more suitable to a microfactory than other machining methods in terms of maintaining high accuracy. Surface profile of EDM Machined component is predicted by micro EDM simulation using superpositioning spark crater. Planar motor and micro pump are developed to construct microfactory system.

  • PDF

Low Frequency Fluctuation Component Analysis in Active Stimulation fMRI Paradigm (활성자극 파라다임 fMRI에서 저주파요동 성분분석)

  • Na, Sung-Min;Park, Hyun-Jung;Chang, Yong-Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.2
    • /
    • pp.115-120
    • /
    • 2010
  • Purpose : To separate and evaluate the low frequency spontaneous fluctuation BOLD signals from the functional magnetic resonance imaging data using sensorimotor active task. Materials and Methods : Twenty female archery players and twenty three control subjects were included in this study. Finger-tapping task consisted of three cycles of right finger tapping, with a subsequent 30 second rest. Blood oxygenation level-dependent (BOLD) data were collected using $T2^*$-weighted echo planar imaging at a 3.0 T scanner. A 3-D FSPGR T1-weighted images were used for structural reference. Image processing and statistical analyses were performed using SPM5 for active finger-tapping task and GIFT program was used for statistical analyses of low frequency spontaneous fluctuation BOLD signal. Results : Both groups showed the activation in the left primary motor cortex and supplemental motor area and in the right cerebellum for right finger-tapping task. ICA analysis using GIFT revealed independent components corresponding to contralateral and ipsilateral sensorimotor network and cognitive-related neural network. Conclusion : The current study demonstrated that the low frequency spontaneous fluctuation BOLD signals can be separated from the fMRI data using finger tapping paradigm. Also, it was found that these independent components correspond to spontaneous and coherent neural activity in the primary sensorimotor network and in the motor-cognitive network.

Development and Performance Evaluation of an Animal SPECT System Using Philips ARGUS Gamma Camera and Pinhole Collimator (Philips ARGUS 감마카메라와 바늘구멍조준기를 이용한 소동물 SPECT 시스템의 개발 및 성능 평가)

  • Kim, Joong-Hyun;Lee, Jae-Sung;Kim, Jin-Su;Lee, Byeong-Il;Kim, Soo-Mee;Choung, In-Soon;Kim, Yu-Kyeong;Lee, Won-Woo;Kim, Sang-Eun;Chung, June-Key;Lee, Myung-Chul;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.6
    • /
    • pp.445-455
    • /
    • 2005
  • Purpose: We developed an animal SPECT system using clinical Philips ARGUS scintillation camera and pinhole collimator with specially manufactured small apertures. In this study, we evaluated the physical characteristics of this system and biological feasibility for animal experiments. Materials and Methods: Rotating station for small animals using a step motor and operating software were developed. Pinhole inserts with small apertures (diameter of 0.5, 1.0, and 2.0 mm) were manufactured and physical parameters including planar spatial resolution and sensitivity and reconstructed resolution were measured for some apertures. In order to measure the size of the usable field of view according to the distance from the focal point, manufactured multiple line sources separated with the same distance were scanned and numbers of lines within the field of view were counted. Using a Tc-99m line source with 0.5 mm diameter and 12 mm length placed in the exact center of field of view, planar spatial resolution according to the distance was measured. Calibration factor to obtain FWHM values in 'mm' unit was calculated from the planar image of two separated line sources. Te-99m point source with i mm diameter was used for the measurement of system sensitivity. In addition, SPECT data of micro phantom with cold and hot line inserts and rat brain after intravenous injection of [I-123]FP-CIT were acquired and reconstructed using filtered back protection reconstruction algorithm for pinhole collimator. Results: Size of usable field of view was proportional to the distance from the focal point and their relationship could be fitted into a linear equation (y=1.4x+0.5, x: distance). System sensitivity and planar spatial resolution at 3 cm measured using 1.0 mm aperture was 71 cps/MBq and 1.24 mm, respectively. In the SPECT image of rat brain with [I-123]FP-CIT acquired using 1.0 mm aperture, the distribution of dopamine transporter in the striatum was well identified in each hemisphere. Conclusion: We verified that this new animal SPECT system with the Phlilps ARGUS scanner and small apertures had sufficient performance for small animal imaging.

Functional MR Imaging of Cerbral Motor Cortex: Comparison between Conventional Gradient Echo and EPI Techniques (뇌 운동피질의 기능적 영상: 고식적 Gradient Echo기법과 EPI기법간의 비교)

  • 송인찬
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.109-113
    • /
    • 1997
  • Purpose: To evaluate the differences of functional imaging patterns between conventional spoiled gradient echo (SPGR) and echo planar imaging (EPI) methods in cerebral motor cortex activation. Materials and Methods: Functional MR imaging of cerebral motor cortex activation was examined on a 1.5T MR unit with SPGR (TRfrE/flip angle=50ms/4Oms/$30^{\circ}$, FOV=300mm, matrix $size=256{\times}256$, slice thickness=5mm) and an interleaved single shot gradient echo EPI (TRfrE/flip angle = 3000ms/40ms/$90^{\circ}$, FOV=300mm, matrix $size=128{\times}128$, slice thickness=5mm) techniques in five male healthy volunteers. A total of 160 images in one slice and 960 images in 6 slices were obtained with SPGR and EPI, respectively. A right finger movement was accomplished with a paradigm of an 8 activation/ 8 rest periods. The cross-correlation was used for a statistical mapping algorithm. We evaluated any differences of the time series and the signal intensity changes between the rest and activation periods obtained with two techniques. Also, the locations and areas of the activation sites were compared between two techniques. Results: The activation sites in the motor cortex were accurately localized with both methods. In the signal intensity changes between the rest and activation periods at the activation regions, no significant differences were found between EPI and SPGR. Signal to noise ratio (SNR) of the time series data was higher in EPI than in SPGR by two folds. Also, larger pixels were distributed over small p-values at the activation sites in EPI. Conclusions: Good quality functional MR imaging of the cerebral motor cortex activation could be obtained with both SPGR and EPI. However, EPI is preferable because it provides more precise information on hemodynamics related to neural activities than SPGR due to high sensitivity.

  • PDF

Fabrication of Single-Crystal Silicon Microstructure by Anodic Reaction in HF Solution (HF 양극반응을 이용한 단결정 실리콘 미세구조의 제조)

  • Cho, Chan-Seob;Sim, Jun-Hwan;Lee, Seok-Soo;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.183-194
    • /
    • 1992
  • Some silicon micromechanical structures useful in sensors and actuators have been fabricated by electropolishing or porous silicon formation technique by anodic reaction in HF solution. The microstructures were lightly doped single crystal silicon and the formation was isotropic independent of crystal directions. Porous silicon layer(PSL) was formed selectively in $n^{+}$ region of $n^{+}/n$ silicon structure by anodic reaction in concentrated HF(20-48%) solution. Characteristics of the formed PSL were investigated along with change of the reaction voltage, HF concentration and the reaction time. PSL was formed only in $n^{+}$ region. The porosity of the PSL was decreased with the increase of HF concentration and independent of reaction voltage. For the case of $n/n^{+}/n$ structures, the etched surface of silicon was fairly smooth and a cusp was not found. The thickness of the microstructures was the same as that of the epitaxial n-Si layer and good uniformity. We have fabricated acceleration sensors by anodic reaction in HF solution(5 wt%) and planar technology. The process was compatible with conventional It fabrication technique. Various micromechanical structures, such as rotors of motor, gears and linear actuator, were also fabricated by the technique and examined by SEM photographs.

  • PDF

A Study on the Performance Evaluation of CNC Control Units of an Old Planar Miller Using Remanufacturing Technology (재제조 기술을 이용한 노후 플래너 밀러의 CNC 제어 장치 성능평가에 관한 연구)

  • Lee, Seong-Won;Chung, Won-Ji;Roh, Young-Hwa;Kong, Seok-Hwan;Lee, Hyun-Jun;Kim, Jin-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1097-1102
    • /
    • 2022
  • With the continuous development of the current industry, the current global environment is in a very serious situation, with resource supply and demand dependent on imports and huge costs for waste disposal due to the depletion of resources and mass generation of industrial waste. Its limitations have already been revealed in many fields, and the importance of re-manufacturing is drawing attention as a countermeasure to these problems. Re-manufacturing aims to recover products that are in the aging and disposal stages, recover to performance close to new products, and re-commercialize them. Among them, most of the machine tools are made of materials such as steel and cast iron with large structures, and raw materials are widely used when producing new products. In addition, since a lot of carbon is generated due to production, it is an object that can obtain a great re-manufacturing effect. Planner millers belonging to large machine tools are one of the machine tool equipment that can greatly reduce resources and energy through re-manufacturing because the structure is very large and the casting is several to tens of tons. Through this machine tool, performance tests and results are derived on the development of re-manufacturing source technology and domestic servo motor and CNC control device.