• 제목/요약/키워드: Planar motion mechanism (PMM) test simulation

검색결과 8건 처리시간 0.028초

구속모형시험을 이용한 KCS 선형의 조종성능 추정 (Prediction of Maneuverability of KCS Using Captive Model Test)

  • 신현경;최시훈
    • 대한조선학회논문집
    • /
    • 제48권5호
    • /
    • pp.465-472
    • /
    • 2011
  • Recently, ultra large scale of ship is being ordered continuously and because of that, the accurate prediction of ship maneuverability in design stage becomes important matter. The model test like PMM test or CFD analysis are representative methods for predicting the maneuverability of ship. In this study, the captive model tests were carried out for predicting maneuverability of MOERI container ship(KCS) which is opened to the public using X-Y Carriage of Ocean Engineering Wide Tank of University of Ulsan. Considering the dimensions of tank, 2m class model ship was used for captive model test. CMT(Circular Motion Test) was performed for obtaining purer hydrodynamic coefficients related to yawing velocity. For getting hydrodynamic coefficients which cannot be obtained using CMT, PMM test(Planar Motion Mechanism test) were also performed. The maneuverability prediction results by simulation are compared with those of other research institutes.

Verification of CFD analysis methods for predicting the drag force and thrust power of an underwater disk robot

  • Joung, Tae-Hwan;Choi, Hyeung-Sik;Jung, Sang-Ki;Sammut, Karl;He, Fangpo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.269-281
    • /
    • 2014
  • This paper examines the suitability of using the Computational Fluid Dynamics (CFD) tools, ANSYS-CFX, as an initial analysis tool for predicting the drag and propulsion performance (thrust and torque) of a concept underwater vehicle design. In order to select an appropriate thruster that will achieve the required speed of the Underwater Disk Robot (UDR), the ANSYS-CFX tools were used to predict the drag force of the UDR. Vertical Planar Motion Mechanism (VPMM) test simulations (i.e. pure heaving and pure pitching motion) by CFD motion analysis were carried out with the CFD software. The CFD results reveal the distribution of hydrodynamic values (velocity, pressure, etc.) of the UDR for these motion studies. Finally, CFD bollard pull test simulations were performed and compared with the experimental bollard pull test results conducted in a model basin. The experimental results confirm the suitability of using the ANSYS-CFX tools for predicting the behavior of concept vehicles early on in their design process.

Design, Implementation and Navigation Test of Manta-type Unmanned Underwater Vehicle

  • Kim, Joon-Young;Ko, Sung-Hyub;Cho, So-Hyung;Lee, Seung-Keon;Sohn, Kyoung-Ho
    • International Journal of Ocean System Engineering
    • /
    • 제1권4호
    • /
    • pp.192-197
    • /
    • 2011
  • This paper describes the mathematical modeling, control algorithm, system design, hardware implementation and experimental test of a Manta-type Unmanned Underwater Vehicle (MUUV). The vehicle has one thruster for longitudinal propulsion, one rudder for heading angle control and two elevators for depth control. It is equipped with a pressure sensor for measuring water depth and Doppler Velocity Log for measuring position and angle. The vehicle is controlled by an on-board PC, which runs with the Windows XP operating system. The dynamic model of 6DOF is derived including the hydrodynamic forces and moments acting on the vehicle, while the hydrodynamic coefficients related to the forces and moments are obtained from experiments or estimated numerically. We also utilized the values obtained from PMM (Planar Motion Mechanism) tests found in the previous publications for numerical simulations. Various controllers such as PID, Sliding mode, Fuzzy and $H{\infty}$ are designed for depth and heading angle control in order to compare the performance of each controller based on simulation. In addition, experimental tests are carried out in a towing tank for depth keeping and heading angle tracking.

비대칭성이 고려된 나선형 시험 모델을 통한 손상 수상함의 직진 안정성 추정 (Estimation of Straight Line Stability of a Damaged Surface Combatant through Spiral Maneuver Test Model Considering Asymmetry)

  • 하정수;정연환
    • 시스템엔지니어링학술지
    • /
    • 제16권2호
    • /
    • pp.110-117
    • /
    • 2020
  • In this paper, we estimated the straight line stability by performing a 3 degree of freedom spiral test simulation of a intact/damaged surface combatant using the hydrodynamic coefficient obtained through the PMM(Planar motion mechanism) test based on system engineering process. A model ship was ONR Tumblehome and damaged compartment was set on the starboard bow. As a result of conducting a spiral test simulation based on the experimental results of J.Ha (2018), the asymmetric straight line stability due to the damaged compartment was confirmed. In the case of a ship in which the starboard bow was damaged, it was confirmed that it had the characteristic to deflect to the left when going straight. Also, when estimating the straight line stability of a both port and starboard asymmetric surface combatant, a separated equation of motion model that sees the port and starboard as different ships seems suitable.

A numerical study on manoeuvrability of wind turbine installation vessel using OpenFOAM

  • Lee, Sungwook;Kim, Booki
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권3호
    • /
    • pp.466-477
    • /
    • 2015
  • In this study, a numerical prediction method on manoeuvrability of Wind Turbine Installation Vessel (WTIV) is presented. Planar Motion Mechanism (PMM) captive test for the bare hull of WTIV is carried out in the model basin and compared with the numerical results using RANS simulation based on Open-source Field Operation And Manipulation (OpenFOAM) calculation to validate the developed method. The manoeuvrability of WTIV with skeg and/or without skeg is investigated using the numerical approach along with the captive model test. In the numerical calculations, the dynamic stability index which indicates the course keeping ability is evaluated and compared for three different hull configurations i.e. bare hull and other two hulls with center skeg and twin skeg. This paper proves that the numerical approach using RANS simulation can be readily applied to estimate the manoeuvrability of WTIV at the initial design stage.

Virtual simulation of maneuvering captive tests for a surface vessel

  • Hajivand, Ahmad;Mousavizadegan, S. Hossein
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권5호
    • /
    • pp.848-872
    • /
    • 2015
  • Hydrodynamic derivatives or coefficients are required to predict the maneuvering characteristics of a marine vehicle. These derivatives are obtained numerically for a DTMB 5512 model ship by virtual simulating of captive model tests in a CFD environment. The computed coefficients are applied to predict the turning circle and zig-zag maneuvers of the model ship. The comparison of the simulated results with the available experimental data shows a very good agreement among them. The simulations show that the CFD is precise and affordable tool at the preliminary design stage to obtain maneuverability performance of a marine vehicles.

구속모형시험을 통한 잠수함 선형의 수상 조건 조종성능 추정 연구 (Prediction of Maneuverability of a Submarine at Surface Condition by Captive Model Test)

  • 권창섭;김동진;이영연;김연규;윤근항;조성록
    • 대한조선학회논문집
    • /
    • 제59권6호
    • /
    • pp.423-431
    • /
    • 2022
  • In this paper, the results of Planar Motion Mechanism (PMM) test for a 1/15 scaled model of the MARIN Joubert BB2 submarine is dealt with to derive the maneuvering coefficients for surface condition. For the depth of surface navigation, the top of the sail was exposed 0.46 m above the water surface in the model scale, and it corresponds to 6.9 m in the full scale. The resistance and self-propulsion tests were conducted, and the model's self-propulsion point was obtained for 1.328 m/s, which corresponded to 10 knots in the full scale. The maneuvering tests were performed at the model's self-propulsion point, and the maneuvering coefficients were obtained. Based on the maneuvering coefficients, a turning simulation was performed for starboard 30 degree of stern fins. The straight-line stability and control effectiveness in the horizontal plane were analyzed using the maneuvering coefficients and compared with the appropriate range. For the analysis of the neutral fin angle of the X-type stern fin, the stern fin test with drift angles was carried out. As a result, the flow straightening effect at lower and upper parts of the stern fin was discussed.

만타형상 무인잠수정의 운동성능 해석 및 제어기 설계를 위한 비선형 수학모델 개발 (Mathematical Modeling for Dynamic Performance Analysis and Controller Design of Manta-type UUV)

  • 변승우;김준영
    • 한국산학기술학회논문지
    • /
    • 제11권1호
    • /
    • pp.21-28
    • /
    • 2010
  • 본 논문에서는 만타형상 무인잠수정(Manta-type unmanned underwater test vehicle)의 운동성능과 제어기설계에 대한 성능을 해석하기 위한 수학모델을 정립하여 시뮬레이션 프로그램을 개발하였다. 6자유도 운동방정식을 이용하여 Matlab/Simulink로 시뮬레이션 프로그램을 구성하였다. 개발된 시뮬레이션 프로그램을 이용하여 만타형상 무인잠수정의 동역학적 운동성능을 해석하였으며, 무인잠수정의 제어성능을 해석하기 위하여 PID(비례-미분-적분)제어기와 슬라이딩모드(Sliding mode)제어기를 설계하여 만타형상 무인잠수정의 제어성능을 해석하였다. 설계된 제어기는 무인잠수정의 수심제어(Depth control)와 방향제어(Heading control)에 사용되었다. 설계된 제어기의 성능을 확인하기 위하여 미해군 대학원의 AUV II와 비교하였다. 설계된 수심제어기와 방향제어기를 이용하여 만타형 무인잠수정의 설계목표에 부합하는 항해제어 시뮬레이션을 실시하였다.