• Title/Summary/Keyword: Planar image

Search Result 267, Processing Time 0.03 seconds

Accuracy Comparison between Intensity Method and Count Method in Measurement of Planar Orientation of Fibers Using Image Processing (화상 처리를 이용한 섬유 배향각 분포 측정에서 농도법과 카운트법의 정확도 비교)

  • Lee, S.D.;Kim, H.;Lee, D.G.;Han, G.Y.;Kim, E.G.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.5
    • /
    • pp.357-364
    • /
    • 1998
  • To investigate accuracies between intensity method and count method for measurement of the fiber orientation distribution, fiber orientation function is derived by drawing simulation figure for the fiber orientation as varying fiber aspect ratio, fiber area ratio, and fiber orientation state, respectively. The values of fiber orientation function measured by intensity method and count method are compared with the calculated ones from simulation figures. The results show that measurement accuracy of fiber orientation angle distribution obtained by count method is by 4% higher than that by intensity method.

  • PDF

Comparison of different radiographic methods for the detection of the mandibular canal

  • Kim Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.33 no.4
    • /
    • pp.199-205
    • /
    • 2003
  • Purpose: To compare the visibility of the mandibular canal at the different radiographic methods such as conventional panoramic radiographs, Vimplant multi planar reformatting (MPR)-CT panoramic images, Vimplant MPR-CT paraxial images and film-based DentaScan MPR-CT images. Materials and Methods: Data of 11 mandibular dental implant patients, who had been planned treatment utilizing both panoramic and MPR-CT examination with DentaScan software (GE Medical systems, Milwaukee, USA), were used in this study. The archived axial CT data stored on CD-R discs were transferred to a personal computer with 17' LCD monitor. Paraxial and panoramic images were reconstructed using Vimplant software (CyberMed Inc., Seoul, Korea). Conventional panoramic radiographs, monitor-based Vimplant MPR-CT panoramic images, monitor-based Vimplant MPR-CT paraxial images, and film-based DentaScan MPR-CT images were evaluated for visibility of the mandibular canal at the mental foramen, 1 cm, 2 cm, and 3 cm posterior to mental foramen using the 4-point grading score. Results: Vimplant MPR-CT panoramic, paraxial, and DentaScan MPR-CT images revealed significantly clearer images than conventional panoramic radiographs. Particularly at the region 1 em posterior to mental foramen, conventional panoramic radiographs showed a markedly lower percentage of 'excellent' mandibular canal images than images produced by other modalites. Vimplant MPR-CT and DentaScan MPR-CT images did not show significant difference in visibility of the mandibular canal. Conclusion: The study results show that Vimplant and DentaScan MPR-CT imaging systems offer significantly better images of the mandibular canal than conventional panoramic radiograph.

  • PDF

Measuring Methods for Two-dimensional Position Referring to the Target Pattern (참조패턴 기반의 2차원 변위 측정 방법론)

  • Jung, Kwang Suk;Lee, Sang Heon;Park, Sung-Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.77-84
    • /
    • 2013
  • In this paper, we review two-dimensional measuring methods referring to target patterns. The patterns consist of two linearly-repeated patterns or is designed repeatedly in two-dimension. The repeated properties are reflectivity, refractivity, air-gapping distance, capacitance, magnetic reluctance, electrical resistance and sloping gradient, etc. However, the optical methods are generally used for high speed processing and density, and their encoding principles are treated here. In case of two-dimensional pattern, as there is not inherently error between single units encoding the pattern except for the metrology frame errors, the end-effector position of an object accompanying the pattern can be measured with respect of the global frame without via error. Therefore, it is regarded as a substitute for laser interferometer with severe environmental constraints and has been applied to the high-accurate planar actuator.

OH, PAHs and Soot Ditribution in a Laminar Diffusion Flame Under Oxidizer Deficient Ambience (산화제 결핍 분위기에서의 층류 확산화염내 OH, PAHs 및 그을음 분포)

  • Shim, Sung-Hoon;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1348-1354
    • /
    • 2002
  • We investigate the flame behavior and spatial distribution of OH, PAHs and soot in a confined buoyant diffusion flame with decrease of the coflowing air flow rate. Direct photographs and Schlieren images represent that flame is Ally occupied by blue flame and becomes unstable, which is partially detached to the fuel nozzle tip in a near extinction flame under extremely reduced oxidizer condition. Laser induced fluorescence profiles clearly shows that OH is still generated in near-extinction flame, although intensity becomes weak with decreasing air flow rate. But soot scattering image cannot be seen any more in an oxidizer deficient ambience and simultaneously the PAHs are widely distributed downstream. These results are due to that a decrease of oxygen concentration in the combustion chamber leads to a temperature drop of flame, as a consequence, to a delay in soot growth and to a expanding of the PAHs, as soot precursors.

Luminous phosphor with modified surface composition and microwave treatment for plasma planar back light

  • Ting, Chu-Chi;Cheng, Hao-Ping;Hsieh, Yu-Heng;Sun, Oliver;Chen, San-Yuan;Lin, Chin-Ching;Kuo, Kuan-Ting;Lee, Shu-Ping
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1534-1535
    • /
    • 2005
  • Highly luminescent efficiency phosphors have been successfully produced by surface modification and microwave irradiation treatment. The SEM image and XRD analysis reveal that the surface morphology of the white-light phosphors can be notably modified by microwave irradiation and exhibit with better crystalline property. The VUV PL spectra show that the microwave irradiation treatment can effectively enhance the luminescent efficiency by a factor of 1.5 times for intensity compared to that without microwave treatment. A further improvement in all visible emission can be made by modifying surface composition through MgO coating on the phosphor powder. These results demonstrate that such a simple approach can provide for improving luminescent efficiency of phosphors for the optoelectronic devices.

  • PDF

Clinical Application of I-123 MIBG Cardiac Imaging (I-123 MIBG Cardiac SPECT의 임상적 적응증)

  • Kang, Do-Young
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.5
    • /
    • pp.331-337
    • /
    • 2004
  • Cardiac neurotransmission imaging allows in vivo assessment of presynaptic reuptake, neurotransmitter storage and postsynaptic receptors. Among the various neurotransmitter, I-123 MIBG is most available and relatively well-established. Metaiodobenzylguanidine (MIBG) is an analogue of the false neurotransmitter guanethidine. It is taken up to adrenergic neurons by uptake-1 mechanism as same as norepinephrine. As tagged with I-123, it can be used to image sympathetic function in various organs including heart with planar or SPECT techniques. I-123 MIBG imaging has a unique advantage to evaluate myocardial neuronal activity in which the heart has no significant structural abnormality or even no functional derangement measured with other conventional examination. In patients with cardiomyopathy and heart failure, this imaging has most sensitive technique to predict prognosis and treatment response of betablocker or ACE inhibitor. In diabetic patients, it allow very early detection of autonomic neuropathy. In patients with dangerous arrhythmia such as ventricular tachycardia or fibrillation, MIBG imaging may be only an abnormal result among various exams. In patients with ischemic heart disease, sympathetic derangement may be used as the method of risk stratification. In heart transplanted patients, sympathetic reinnervation is well evaluated. Adriamycin-induced cardiotoxicity is detected earlier than ventricular dysfunction with sympathetic dysfunction. Neurodegenerative disorder such as Parkinson's disease or dementia with Lewy bodies has also cardiac sympathetic dysfunction. Noninvasive assessment of cardiac sympathetic nerve activity with I-123 MIBG imaging nay be improve understanding of the pathophysiology of cardiac disease and make a contribution to predict survival and therapy efficacy.

Computational Flow Analysis and Preliminary Measurement for the CANDU-6 Moderator Tank Model (CANDU-6 감속재 탱크 모형의 유동장 전산해석 및 예비측정)

  • Cha, Jae Eun;Choi, Hwa Lim;Rhee, Bo Wook;Kim, Hyoung Tae
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.3
    • /
    • pp.30-36
    • /
    • 2012
  • We are planning to construct a scaled-down moderator facility to simulate the CANDU-6 moderator circulation phenomena during steady state operating and accident conditions. In the present work a preliminary experiment using a 1/40 scaled-down moderator tank has been performed to investigate the anticipated problems of the flow visualization and measurement in the planning scaled-down moderator facility. We shortly describe CFD analysis result for the 1/40 scaled-down test model and the flow measurement techniques used for this test facility under isothermal flow conditions. The Particle Image Velocimetry (PIV) method is used to visualize and measure the velocity field of water in a transparent Plexiglas tank. Planar Laser Induced Fluorescence (PLIF) technique is used to evaluate the feasibility of temperature field measurement in the range of $20-40^{\circ}C$ of water temperature using an one-color method.

Hand Gesture Interface for Manipulating 3D Objects in Augmented Reality (증강현실에서 3D 객체 조작을 위한 손동작 인터페이스)

  • Park, Keon-Hee;Lee, Guee-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.20-28
    • /
    • 2010
  • In this paper, we propose a hand gesture interface for the manipulation of augmented objects in 3D space using a camera. Generally a marker is used for the detection of 3D movement in 2D images. However marker based system has obvious defects since markers are always to be included in the image or we need additional equipments for controling objects, which results in reduced immersion. To overcome this problem, we replace marker by planar hand shape by estimating the hand pose. Kalman filter is for robust tracking of the hand shape. The experimental result indicates the feasibility of the proposed algorithm for hand based AR interfaces.

An integrated visual-inertial technique for structural displacement and velocity measurement

  • Chang, C.C.;Xiao, X.H.
    • Smart Structures and Systems
    • /
    • v.6 no.9
    • /
    • pp.1025-1039
    • /
    • 2010
  • Measuring displacement response for civil structures is very important for assessing their performance, safety and integrity. Recently, video-based techniques that utilize low-cost high-resolution digital cameras have been developed for such an application. These techniques however have relatively low sampling frequency and the results are usually contaminated with noises. In this study, an integrated visual-inertial measurement method that combines a monocular videogrammetric displacement measurement technique and a collocated accelerometer is proposed for displacement and velocity measurement of civil engineering structures. The monocular videogrammetric technique extracts three-dimensional translation and rotation of a planar target from an image sequence recorded by one camera. The obtained displacement is then fused with acceleration measured from a collocated accelerometer using a multi-rate Kalman filter with smoothing technique. This data fusion not only can improve the accuracy and the frequency bandwidth of displacement measurement but also provide estimate for velocity. The proposed measurement technique is illustrated by a shake table test and a pedestrian bridge test. Results show that the fusion of displacement and acceleration can mitigate their respective limitations and produce more accurate displacement and velocity responses with a broader frequency bandwidth.

Investigation of Performance Degradation of Shack Hartmann Wavefront Sensing Due to Pupil Irradiance Profile

  • Lee Jun-Ho;Lee Yaung-Cheol;Kang Eung-Cheol
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.16-22
    • /
    • 2006
  • Wavefront sensing using a Shack-Hartmann sensor has been widely used for estimating wavefront errors or distortions. The sensor combines the local slopes, which are estimated from the centroids of each lenslet image, to give the overall wavefront reconstruction. It was previously shown that the pupil-plane irradiance profile effects the centroid estimation. Furthermore, a previous study reported that the reconstructed wavefront from a planar wavefront with a Gaussian pupil irradiance profile contains large focus and spherical aberration terms when there is a focus error. However, it has not been reported yet how seriously the pupil irradiance profiles, which can occur in practical applications, effect the sensing errors. This paper considered two cases when the irradiance profiles are not uniform: 1) when the light source is Gaussian and 2) when there is a partial interference due to a double reflection by a beam splitting element. The images formed by a Shack-Hartmann sensor were simulated through fast Fourier transform and were then supposed to be detected by a noiseless CCD camera. The simulations found that sensing errors, due to the Gaussian irradiance profile and the partial interference, were found to be smaller than RMS ${\lambda}/50$ when ${\lambda}$ is $0.6328\;{\mu}m$, which can be ignored in most practical cases where the reference and test beams have the same irradiance profiles.