• Title/Summary/Keyword: Planar image

Search Result 267, Processing Time 0.027 seconds

2D Shape Recognition System Using Fuzzy Weighted Mean by Statistical Information

  • Woo, Young-Woon;Han, Soo-Whan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.49-54
    • /
    • 2009
  • A fuzzy weighted mean method on a 2D shape recognition system is introduced in this paper. The bispectrum based on third order cumulant is applied to the contour sequence of each image for the extraction of a feature vector. This bispectral feature vector, which is invariant to shape translation, rotation and scale, represents a 2D planar image. However, to obtain the best performance, it should be considered certain criterion on the calculation of weights for the fuzzy weighted mean method. Therefore, a new method to calculate weights using means by differences of feature values and their variances with the maximum distance from differences of feature values. is developed. In the experiments, the recognition results with fifteen dimensional bispectral feature vectors, which are extracted from 11.808 aircraft images based on eight different styles of reference images, are compared and analyzed.

  • PDF

A Study on 2-D Objects Recognition Using Polygonal Approximation and Coordinates Transition (다각근사화와 좌표이동을 이용한 겹친 2차원 물체인식)

  • 박원진;김보현;이대영
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1986.10a
    • /
    • pp.45-52
    • /
    • 1986
  • This paper presents an experimental model-based vision system which can identify and locate object in scenes containing multiple occluded parts. The objent are assumed to be regid, planar parta. In any recognition system the type of object that might appear in the image dictates the type of knowledge that is needed to recognize the object. The data is reduced to a seguential list of points or pixel that appear on the boundary of the objects. Next the boundary of the object is smoothed using a polygonal approximation algorithm. Recognition consists in finding the prototype that matches model to image. The best match is obtained by optimising some similarity measure.

  • PDF

Range image reconstruction based on multiresolution surface parameter estimation (다해상도 면 파라미터 추정을 이용한 거리영상 복원)

  • 장인수;박래홍
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.6
    • /
    • pp.58-66
    • /
    • 1997
  • This paper proposes a multiresolution surface parameter estimation method for range images. Based on robust estimation of surface parameters, it approximates a patch to a planar surface in the locally adaptive window. Selection of resolution is made pixelwise by comparing a locally computed homogeneity measure with th eglobal threshold determined by te distribution of the approximation error. The proposed multiresolution surface parameter estimation method is applied to range image reconstruction. Computer simulation results with noisy rnag eimages contaminated by additive gaussian noise and impulse noise show that the proposed multiresolution reconstruction method well preserves step and roof edges compared with the conventional methods. Also the segmentation method based on the estimated surface parameters is shown to be robust to noise.

  • PDF

Three Dimensional Medical Image Rendering Using Laplace's Equation (라플라스 방정식의 해를 이용한 삼차원 의학 영상 랜더링)

  • Kim, S.M.;Ahn, C.B.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2918-2920
    • /
    • 2000
  • A new multi-planar interpolation technique for three dimensional medical image rendering is proposed. In medical imaging. resolution in the slice direction is usually much lower than those in the transverse planes. The proposed method is based on the solution of the Laplace's equation used in the electrostatics. In this approach. two contours in the source and destination planes for a given object is assumed to have equi-potentials. Some preprocessing and post-processing including scaling. displacement. rotation from the centers of mass are involved in the algorithm. The interpolation solution assumes mostly smoothing changes in between the source and destination planes. Simultaneous multiple interpolation planes are inherently obtained in the proposed method. Some experimental and simulation results are shown.

  • PDF

Neuroactivation studies using Functional Brain MRI (기능적 자기공명영상을 이용한 뇌활성화 연구)

  • Chung, Kyung-Ho
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.1
    • /
    • pp.63-72
    • /
    • 2003
  • Functional MRI (fMRI) provides an indirect mapping of cerebral activity, based on the detection of the local blood flow and oxygenation changes following neuronal activity (Blood Oxygenation Level Dependent). fMRI allows us to study noninvasively the normal and pathological aspects of functional cortical organization. Each fMRI study compares two different states of activity. Echo-Planar Imaging is the technique that makes it possible to study the whole brain at a rapid pace. Activation maps are calculated from a statistical analysis of the local signal changes. fMRI is now becoming an essential tool in the neurofunctional evaluation of normal volunteers and many neurological patients as well as the reference method to image normal or pathologic functional brain organization.

GPU-Based Image Stitching for Camera Array (카메라 어레이를 위한 GPU 기반 이미지 병합)

  • Bae, Do Hyun;Lee, Young-joon;Shin, Heejae;Bayartsogt, Munkhbayar;Kim, Minho;Kim, Jin Suk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.352-354
    • /
    • 2012
  • 본 논문에서는 웹캠 카메라 어레이(camera array)로 얻은 여러 장의 이미지를 빠른 속도로 봉합(stitching)하여 고해상도 이미지를 얻기 위해 그래픽스 하드웨어를 이용하는 병렬 알고리즘을 제시한다. 고정된 레이아웃의 카메라 어레이를 이용하여 평면 혹은 원경을 촬영하는 경우, 기존에 널리 쓰이던 평면 사영 이미지 봉합(planar projective image stitching)과 선형 혼합(linear blending)을 통해 만족스런 결과를 얻을 수 있다. 본 논문에서는 이러한 연산을 그래픽스 하드웨어에서 병렬처리 함으로써 추후 실시간 고해상도 동영상 스트리밍 이미지 병합에 활용할 수 있을 정도로 빠른 속도로 처리하는 방법을 제시한다.

$^{18}$F-Fluoride-PET in Skeletal Imaging ($^{18}$F-Fluoride-PET을 이용한 골격계 영상)

  • Jeon, Tae-Joo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.4
    • /
    • pp.253-258
    • /
    • 2009
  • Bone scintigraphy using $^{99m}$Tc-labeled phosphate agents has long been the standard evaluation method for whole skeletal system. However, recent shortage of $^{99m}$Tc supply and advanced positron emission tomography (PET) technology evoked the attention to surrogate radiopharmaceuticals and imaging modalities for bone. Actually, fluorine-18 ($^{18}$F) was the first bone seeking radiotracer before the introduction of $^{99m}$Tc-labeled agents even though its clinical application failed to become pervasive anymore after the rapid spread of Anger type gamma camera systems in early 1970s. However, rapidly developed PET technology made us refocus on the usefulness of $^{18}$F as a PET tracer. Early study comparing $^{18}$F-Na PET scan and planar bone scintigraphy reported that PET has higher sensitivity and specificity in the diagnosis of metastatic bone lesions than planar bone scan. Subsequent reports comparing between PET and both planar and SPECT bone image also revealed better results of PET scan in similar study groups. Rapid clinical application of PET/CT also accumulated considerable amount of experiences in skeletal evaluation and this modality is known to have better diagnostic power than stand alone PET system as well as bone scan. Furthermore $^{18}$F-Na PET/CT revealed better or at least equal results in detection of primary and metastatic bone lesions compared with CT and MRI. Therefore, it is obvious that $^{18}$F-Na PET/CT has potential to become new imaging modality for practical skeletal evaluation so continuous and careful evaluation of this modality and radiopharmaceutical must be required.

Color Correction for Uniformity Illumination using Multispectral Relighting (멀티스펙트럴 재조명을 이용한 균일 조명 색상 보정)

  • Sim, Kyudong;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.22 no.2
    • /
    • pp.207-213
    • /
    • 2017
  • In order to accurately perform multispectral imaging using a multiplexed illumination, intensity of illumination in a scene must be uniform. For image acquisition that requires accurate color information, even if not multispectral imaging, the illumination information must be accurate, and a flat light source or illumination calibration is performed for accurate illumination characteristics. In this paper, we propose a method of color correction to uniformly illuminate an image with non-uniform illumination intensity. The proposed method uses multispectral imaging instead of illumination calibration for color correction. First of all, we perform multispectral imaging with two images obtained from non-uniformity illumination to acquire spectral reflectance. The obtained reflection spectrum is relit as the illumination characteristic of the image obtained from general planar light such as fluorescent light or sunlight. By comparing the image obtained by relighting with the uniformly illuminated image, the non-uniformity of the illumination is confirmed, and the color correction is performed as the image obtained from the uniform image. It is expected that the experimental results will confirm whether the non-uniformity of the illumination is uniformly corrected and reduce the restriction of illumination in obtaining the color information of the image.

Exemplar-Based Image Inpainting for Spherical Panoramic Image (구면 파노라마 영상을 위한 표본 기반 영상 인페인팅)

  • Kim, Bosung;Park, Jong-Seung
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.437-449
    • /
    • 2016
  • Previous image processing techniques based on plane-to-plane transformations cannot be utilized for spherical panoramic images. In this paper, we propose a new method to inpaint a spherical panoramic image using exemplar, which is deformed by the location of the patch. Our proposed method makes the deformed exemplar patch by latitude and uses it as the reference patch to restore the damaged area. The exemplar-based inpainting method is based on the planar image coordinate system and thus the classical method cannot be applied to the spherical panoramic image. The merit of our proposed method is the fact that it is not dependent on the location of the damaged area. From the experimental results, we proved that our proposed method satisfies the original purpose of the exemplar-based inpainting technique for the spherical panoramic image.

Measurement of the fuel distribution in a scaled ATR combustor using PLIF (PLIF를 이용한 ATR 연소기 축소모형의 연료분포 측정연구)

  • Jin Yu-In;Yang In-Young;Choi Young-Hwan;Yang Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.55-65
    • /
    • 2005
  • Mixing performance between fuel and oxidizer is a significant parameter of combustion efficiency and stability in an air-turbo ramjet combustor. Two types of petal mixer were experimented to research the mixing performance. Mixing performance and fuel distribution images were obtained for petal mixers. Planar laser-induced fluorescence(PLIF) was used to obtain 2-D fuel distribution. The obtained images were processed in order to make use of the image information to a quantitative level. The results of analyzing the fluorescence images could be useful to find better mixing performance between mixers.