• 제목/요약/키워드: Planar assessment

검색결과 37건 처리시간 0.023초

반자율무인잠수정의 수중 복합항법 시스템 성능평가를 위한 회전팔 시험 (Rotating Arm Test for Assessment of an Underwater Hybrid Navigation System for a Semi-Autonomous Underwater Vehicle)

  • 이종무;이판묵;김시문;홍석원;서재원;성우제
    • 한국해양공학회지
    • /
    • 제17권4호
    • /
    • pp.73-80
    • /
    • 2003
  • This paper presents considerations on the results of the rotating arm test, which was carried out for assessment of an hybrid navigation system for a semi-autonomous underwater vehicle. The navigation system consists of an inertial measurement unit(IMU), an ultra-short baseline(USBL) acoustic navigation sensor and a doppler velocity log(DVL) accompanying a magnetic compass. A navigational systemmodel is derived to include the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters are 25 in the order. The extended Kalman filter was used to propagate the error covariance, The rotating arm tests were carried out in the Ocean Engineering Basin of KRISO, to generate circular motion. The hybrid underwater navigation system shows good tracking performance against the circular planar motion. Additionally this paper checked the effects of the sampling ratio of the navigation system and the possibility of the dead reckoning with the DVL and the magnetic compass to estimate the position of the vehicle.

I-123 MIBG Cardiac SPECT의 임상적 적응증 (Clinical Application of I-123 MIBG Cardiac Imaging)

  • 강도영
    • 대한핵의학회지
    • /
    • 제38권5호
    • /
    • pp.331-337
    • /
    • 2004
  • Cardiac neurotransmission imaging allows in vivo assessment of presynaptic reuptake, neurotransmitter storage and postsynaptic receptors. Among the various neurotransmitter, I-123 MIBG is most available and relatively well-established. Metaiodobenzylguanidine (MIBG) is an analogue of the false neurotransmitter guanethidine. It is taken up to adrenergic neurons by uptake-1 mechanism as same as norepinephrine. As tagged with I-123, it can be used to image sympathetic function in various organs including heart with planar or SPECT techniques. I-123 MIBG imaging has a unique advantage to evaluate myocardial neuronal activity in which the heart has no significant structural abnormality or even no functional derangement measured with other conventional examination. In patients with cardiomyopathy and heart failure, this imaging has most sensitive technique to predict prognosis and treatment response of betablocker or ACE inhibitor. In diabetic patients, it allow very early detection of autonomic neuropathy. In patients with dangerous arrhythmia such as ventricular tachycardia or fibrillation, MIBG imaging may be only an abnormal result among various exams. In patients with ischemic heart disease, sympathetic derangement may be used as the method of risk stratification. In heart transplanted patients, sympathetic reinnervation is well evaluated. Adriamycin-induced cardiotoxicity is detected earlier than ventricular dysfunction with sympathetic dysfunction. Neurodegenerative disorder such as Parkinson's disease or dementia with Lewy bodies has also cardiac sympathetic dysfunction. Noninvasive assessment of cardiac sympathetic nerve activity with I-123 MIBG imaging nay be improve understanding of the pathophysiology of cardiac disease and make a contribution to predict survival and therapy efficacy.

CANDU형 원전 압력관에 존재하는 축방향 균열의 응력확대계수 (Stress Intensity Factors for Axial Cracks in CANDU Reactor Pressure Tubes)

  • 이국희;오영진;박흥배;정한섭;정하주;김윤재
    • 한국압력기기공학회 논문집
    • /
    • 제7권1호
    • /
    • pp.17-26
    • /
    • 2011
  • CANDU reactor core is composed a few hundreds pressure tubes, which support and locate the nuclear fuels in the reactor. Each pressure tube provides pressure boundary and flow path of primary heat transport system in the core region. In order to guarantee the structural integrity of pressure tube flaws which can be found by in-service inspection, crack growth and fracture initiation assessment have to be performed. Stress intensity factors are important and basic information for structural integrity assessment of planar and laminar flaws (e. g. crack). This paper reviews and confirms the stress intensity factor of axial crack, proposed in CSA N285.8-05, which is an fitness-for-service evaluation code for pressure tubes in CANDU nuclear reactors. The stress intensity factors in CSA N285.8-05 were compared with stress intensity factors calculated by three methods (finite element results, API 579-1/ASME FFS-1 2007 Fitness-For-Service and ASME Boiler and Pressure Vessel Code Section XI). The effects of Poisson's ratio and anisotropic elastic modulus on stress intensity factors were also discussed.

입체시 기반 공간정보의 효율적 갱신을 위한 3차원 디스플레이 장비 적용에 관한 연구 (Study on Applying 3D Display Device for Effective Update of Spatial Information Based on Stereovision)

  • 최선옥;김동욱;김덕인;위광재
    • 한국측량학회지
    • /
    • 제29권6호
    • /
    • pp.601-611
    • /
    • 2011
  • 본 논문에서는 최신 기술의 3차원 디스플레이 장비를 수치 주제도를 제작 및 수정, 갱신하는 공간정보갱신시스템에 적용하여 공간정보의 정확도 및 사용자의 편의성을 고려한 최적의 3차원 디스플레이 장비를 선별하는 연구를 수행하였다. 실험은 제조회사 및 구현방식이 상이한 각각의 3차원 디스플레이 장비를 공간정보갱신시스템에 적용한 후 스테레오로 획득된 항공영상을 3차원 디스플레이 장비를 통해 출력하여 각 디스플레이 장비에 나타난 입체영상으로부터 공간정보를 추출하였다. 3차원 디스플레이 장비의 평가는 사용자의 편의성 및 추출된 공간정보의 정확도에 대해서 정량적, 정성적 분석을 수행하였다. 실험결과 공간정보 생성을 위한 3차원 입체시 작업 시 PLANAR사의 PL2020과 Redrover사의 Tru3Di 3차원 모니터가 다른 장비들에 비해 시청환경면에서 우수한 성능을 나타내는 것을 확인할 수 있었으며, 사용자의 편의성, 업무 효율성, 공간정보의 정확성 면에서 시스템이 개선될 수 있을 것으로 기대한다.

Muscle Functional MRI of Exercise-Induced Rotator Cuff Muscles

  • Tawara, Noriyuki;Nishiyama, Atsushi
    • Investigative Magnetic Resonance Imaging
    • /
    • 제25권1호
    • /
    • pp.1-9
    • /
    • 2021
  • The aim of this study was to provide a new assessment of rotator cuff muscle activity. Eight male subjects (24.7 ± 3.2 years old,171.2 ± 9.8 cm tall, and weighing 63.8 ± 11.9 kg) performed the study exercises. The subjects performed 10 sets of the exercise while fixing the elbow at 90 degrees flexure and lying supine on a bed. One exercise set consisted of the subject performing external shoulder rotation 50 times using training equipment. Two imaging protocols were employed: (a) true fast imaging with steady precession (TrueFISP) at an acquisition time of 12 seconds and (b) multi-shot spin-echo echo-planar imaging (MSSE-EPI) at an acquisition time of 30 seconds for one echo. The main method of assessing rotator cuff muscle activity was functional T2 mapping using ultrafast imaging (fast-acquired muscle functional MRI [fast-mfMRI]). Fast-mfMRI enabled real-time imaging for the identification and evaluation of the degree of muscle activity induced by the exercise. Regions of interest were set at several places in the musculus subscapularis (sub), musculus supraspinatus (sup), musculus teres minor (ter), and deltoid muscle (del). We used the MR signal of the images and transverse relaxation time (T2) for comparison. Most of the TrueFISP signal was not changed by exercise and there was no significant difference from the resting values. Only the T2 in the musculus teres minor was increased after one set and the change were seen on the T2 images. Additionally, except for those after one and two sets, the changes in T2 were significant compared to those at rest (P < 0.01). We also demonstrated identify and visualize the extent to which muscles involved in muscle activity by exercise. In addition, we showed that muscle activity in a region such as a shoulder, which is susceptible to B0 inhomogeneity, could be easily detected using this technique.

The formation of Paper and the Measurement of Formation

  • Komppa, Olavi
    • 펄프종이기술
    • /
    • 제29권2호
    • /
    • pp.76-82
    • /
    • 1997
  • In paper the evenness of planar distribution of mass in a small scale is called formation (orbetter:mass formation). Traditionally formation has been assessed visually, by looking the sheet of paper against transmitted light. Different kinds of optieal testers are being usd to obtain quantitative rankings htat would be independent of the observer but would well correspond to the visual assessment. However, various raw-material and process factors do influence light trans-mittance in paper and do impair the correspondence between basis weight and the optical formation measurement (or visual assessment). As the optical formation test methods do not incorporate an efficient calib ration routine, the formation of the sophisticated paper grades of today the is rather difficult to measure optically and may lead to erroneous results. It may be concluded that the optical measurement is not suitable for paper grades with high filler content. coating, heavy calendering or that are made of heavily beaten pulp, nordoes it apply for dyed or printed papers. For this reason, visual assessment and optical evaluation shoild be replaced with a measurement that gives reliable results independent on paper grode and manufacturing process. Formation measuremend based on beta radiation is suitable for all paper grades regardless to the material contents or process treatment. It is possible to measure even dyed or printed samples. Thonks to a sim ple and relioble calibration, the results are converted to real basis weight balues that remain reliable even with time. The only beta tester commercially available is the AMBERTEC Beta Formation Tester. Formation of paper does vary locally in the web. Typically there exists a formation profile, too similarly to other properties of paper. Therefore, formation should ? ays be expressed as a mean of a sufficient amount of parallel determinations. All formation measurements should be calibrated against basis weight.

  • PDF

골결손부 치유과정에서 cone beam형 전산화단층영상의 정확도 (The accuracy of the imaging reformation of cone beam computed tomography for the assessment of bone defect healing)

  • 강호덕;김규태;최용석;황의한
    • Imaging Science in Dentistry
    • /
    • 제37권2호
    • /
    • pp.69-77
    • /
    • 2007
  • Purpose: To evaluate the accuracy of the imaging reformation of cone beam computed tomography for the assessment of bone defect healing in rat model. Materials and Methods: Sprague-Dawley strain rats weighing about 350 gms were selected. Then critical size bone defects were done at parietal bone with implantation of collagen sponge. The rats were divided into seven groups of 3 days, 1 week, 2 weeks, 3 weeks, 4 weeks, 6 weeks, and 8 weeks. The healing of surgical defect was assessed by multi planar reconstruction (MPR) images and three-dimensional (3-D) images of cone beam computed tomography, compared with soft X-ray radiograph and histopathologic examination. Results: MPR images and 3-D images showed similar reformation of the healing amount at 3 days, 1 week, 2 weeks, and 8 weeks, however, lower reformation at 3 weeks, 4 weeks, and 6 weeks. According to imaging-based methodologies, MPR image revealed similar reformation of the healing amount than 3-D images compare with soft X-ray image. Among the four threshold values for 3-D images, 400-500 HU revealed similar reformation of the healing amount. Histopathologic examination confirmed the newly formed trabeculation correspond with imaging-based methologies. Conclusion: MPR images revealed higher accuracy of the imaging reformation of cone beam computed tomography and cone beam computed tomography is a clinically useful diagnostic tool for the assessment of bone defect healing.

  • PDF

Diagnostic Performance of Spin-Echo Echo-Planar Imaging Magnetic Resonance Elastography in 3T System for Noninvasive Assessment of Hepatic Fibrosis

  • Se Woo Kim;Jeong Min Lee;Sungeun Park;Ijin Joo;Jeong Hee Yoon;Won Chang;Haeryoung Kim
    • Korean Journal of Radiology
    • /
    • 제23권2호
    • /
    • pp.180-188
    • /
    • 2022
  • Objective: To validate the performance of 3T spin-echo echo-planar imaging (SE-EPI) magnetic resonance elastography (MRE) for staging hepatic fibrosis in a large population, using surgical specimens as the reference standard. Materials and Methods: This retrospective study initially included 310 adults (155 undergoing hepatic resection and 155 undergoing donor hepatectomy) with histopathologic results from surgical liver specimens. They underwent 3T SE-EPI MRE ≤ 3 months prior to surgery. Demographic findings, underlying liver disease, and hepatic fibrosis pathologic stage according to METAVIR were recorded. Liver stiffness (LS) was measured by two radiologists, and inter-reader reproducibility was evaluated using the intraclass correlation coefficient (ICC). The mean LS of each fibrosis stage (F0-F4) was calculated in total and for each etiologic subgroup. Comparisons among subgroups were performed using the Kruskal-Wallis test and Conover post-hoc test. The cutoff values for fibrosis staging were estimated using receiver operating characteristic (ROC) curve analysis. Results: Inter-reader reproducibility was excellent (ICC, 0.98; 95% confidence interval, 0.97-0.99). The mean LS values were 1.91, 2.41, 3.24, and 5.41 kPa in F0-F1 (n = 171), F2 (n = 26), F3 (n = 38), and F4 (n = 72), respectively. The discriminating cutoff values for diagnosing ≥ F2, ≥ F3, and F4 were 2.18, 2.71, and 3.15 kPa, respectively, with the ROC curve areas of 0.97-0.98 (sensitivity 91.2%-95.9%, specificity 90.7%-99.0%). The mean LS was significantly higher in patients with cirrhosis (F4) of nonviral causes, such as primary biliary cirrhosis (9.56 kPa) and alcoholic liver disease (7.17 kPa) than in those with hepatitis B or C cirrhosis (4.28 and 4.92 kPa, respectively). There were no statistically significant differences in LS among the different etiologic subgroups in the F0-F3 stages. Conclusion: The 3T SE-EPI MRE demonstrated high interobserver reproducibility, and our criteria for staging hepatic fibrosis showed high diagnostic performance. LS was significantly higher in patients with non-viral cirrhosis than in those with viral cirrhosis.

The impact of successive earthquakes on the seismic damage of multistorey 3D R/C buildings

  • Kostinakis, Konstantinos;Morfidis, Konstantinos
    • Earthquakes and Structures
    • /
    • 제12권1호
    • /
    • pp.1-12
    • /
    • 2017
  • Historical earthquakes have shown that successive seismic events may occur in regions of high seismicity. Such a sequence of earthquakes has the potential to increase the damage level of the structures, since any rehabilitation between the successive ground motions is practically impossible due to lack of time. Few studies about this issue can be found in literature, most of which focused their attention on the seismic response of SDOF systems or planar frame structures. The aim of the present study is to examine the impact of seismic sequences on the damage level of 3D multistorey R/C buildings with various structural systems. For the purposes of the above investigation a comprehensive assessment is conducted using three double-symmetric and three asymmetric in plan medium-rise R/C buildings, which are designed on the basis of the current seismic codes. The buildings are analyzed by nonlinear time response analysis using 80 bidirectional seismic sequences. In order to account for the variable orientation of the seismic motion, the two horizontal accelerograms of each earthquake record are applied along horizontal orthogonal axes forming 12 different angles with the structural axes. The assessment of the results revealed that successive ground motions can lead to significant increase of the structural damage compared to the damage caused by the corresponding single seismic events. Furthermore, the incident angle can radically alter the successive earthquake phenomenon depending on the special characteristics of the structure, the number of the sequential earthquakes, as well as the distance of the record from the fault.

반자율무인잠수정의 수중 복합항법 시스템 성능평가를 위한 회전팔 시험 (Rotating Arm Test for Assessment of an Underwater Hybrid Navigation System for a Semi-Autonomous Underwater Vehicle)

  • 이종무;이판묵;김시문;홍석원;서재원;성우제
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.141-148
    • /
    • 2003
  • This paper presents a rotating ann test for assessment of an underwater hybrid navigation system for a semi-autonomous underwater vehicle. The navigation system consists of an inertial measurement unit (IMU), an ultra-short baseline (USBL) acoustic navigation sensor and a doppler velocity log (DVL) accompanying a magnetic compass. The errors of inertial measurement units increase with time due to the bias errors of gyros and accelerometers. A navigational system model is derived to include the error model of the USBL acoustic navigation sensor and the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 25 in the order. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors and correct the state equation when the measurements are available. The rotating ann tests are conducted in the Ocean Engineering Basin of KRISO, KORDI to generate circular motion in laboratory, where the USBL system was absent in the basin. The hybrid underwater navigation system shows good tracking performance against the circular planar motion. Additionally this paper checked the effects of the sampling ratio of the navigation system and the possibility of the dead reckoning with the DVL and the magnetic compass to estimate the position of the vehicle.

  • PDF