KSII Transactions on Internet and Information Systems (TIIS)
/
제17권2호
/
pp.435-449
/
2023
The state-of-the-art video-based point cloud compression(V-PCC) has a high efficiency of compressing 3D point cloud by projecting points onto 2D images. These images are then padded and compressed by High-Efficiency Video Coding(HEVC). Pixels in padded 2D images are classified into three groups including origin pixels, padded pixels and unoccupied pixels. Origin pixels are generated from projection of 3D point cloud. Padded pixels and unoccupied pixels are generated by copying values from origin pixels during image padding. For padded pixels, they are reconstructed to 3D space during geometry reconstruction as well as origin pixels. For unoccupied pixels, they are not reconstructed. The rate distortion optimization(RDO) used in HEVC is mainly aimed at keeping the balance between video distortion and video bitrates. However, traditional RDO is unreliable for padded pixels and unoccupied pixels, which leads to significant waste of bits in geometry reconstruction. In this paper, we propose a new RDO scheme which takes 3D-Distortion into account instead of traditional video distortion for padded pixels and unoccupied pixels. Firstly, these pixels are classified based on the occupancy map. Secondly, different strategies are applied to these pixels to calculate their 3D-Distortions. Finally, the obtained 3D-Distortions replace the sum square error(SSE) during the full RDO process in intra prediction and inter prediction. The proposed method is applied to geometry frames. Experimental results show that the proposed algorithm achieves an average of 31.41% and 6.14% bitrate saving for D1 metric in Random Access setting and All Intra setting on geometry videos compared with V-PCC anchor.
This paper proposes a reversible information hiding method for binary images. A half of pixels in noisy blocks on cover images is candidate for embeddable pixels. Among the candidate pixels, we select compressive pixels by bit patterns of its neighborhood to compress the pixels effectively. Thus, embeddable pixels in the proposed method are compressive pixels in noisy blocks. We provide experimental results using several binary images binarized by the different methods.
In this paper, we propose soft dead pixels detection method by analysing different response at hot and cold images. Abnormal pixels are able to effect detecting a small target. It also makes confusing real target or not cause of changing target size. Almost exist abnormal pixels after image signal processing even if dead pixels are removed by dead pixel compensation are called soft dead pixels. They are showed defect in final image. So removing or compensating dead pixels are very important for detecting object. The key idea of this proposed method, detecting dead pixels, is that most of soft deads have different response characteristics between hot image and cold image. General infrared cameras do NUC to remove FPN. Working 2-reference NUC must be needed getting data, hot & cold images. The way which is proposed dead pixel detection is that we compare response, NUC gain, at each pixel about two different temperature images and find out dead pixels if the pixels exceed threshold about average gain of around pixels.
Many studies have generally used a large number of pure pixels as an approach to training set design. The training set are used, however, varies between classifiers. In the recent research, it was reported that small mixed pixels between classes are actually more useful than larger pure pixels of each class in Support Vector Machine (SVM) classification. We evaluated a usability of small mixed pixels as a training set for the classification of high-resolution satellite imagery. We presented an advanced approach to obtain a mixed pixel readily, and evaluated the appropriateness with the land cover classification from IKONOS satellite imagery. The results showed that the accuracy of the classification based on small mixed pixels is nearly identical to the accuracy of the classification based on large pure pixels. However, it also showed a limitation that small mixed pixels used may provide insufficient information to separate the classes. Small mixed pixels of the class border region provide cost-effective training sets, but its use with other pixels must be considered in use of high-resolution satellite imagery or relatively complex land cover situations.
Nighttime sea fog detection from satellite is very hard due to limitation in using visible channels. Currently, most widely used method for the detection is the Dual Channel Difference (DCD) method based on Brightness Temperature Difference between 3.7 and 11 ${\mu}m$ channel (BTD). However, this method have difficulty in distinguishing between fog and low cloud, and sometimes misjudges middle/high cloud as well as clear scene as fog. Using CALIPSO Lidar Profile measurements, we have analyzed the intrinsic problems in detecting nighttime sea fog from various satellite remote sensing algorithms and suggested the direction for the improvement of the algorithm. From the comparison with CALIPSO measurements for May-July in 2011, the DCD method excessively overestimates foggy pixels (2542 pixels). Among them, only 524 pixel are real foggy pixels, but 331 pixels and 1687 pixels are clear and other type of clouds, respectively. The 514 of real foggy pixels accounts for 70% of 749 foggy pixels identified by CALIPSO. Our proposed new algorithm detects foggy pixels by comparing the difference between cloud top temperature and underneath sea surface temperature from assimilated data along with the DCD method. We have used two types of cloud top temperature, which obtained from 11 ${\mu}m$ brightness temperature (B_S1) and operational COMS algorithm (B_S2). The detected foggy 1794 pixels from B_S1 and 1490 pixel from B_S2 are significantly reduced the overestimation detected by the DCD method. However, 477 and 446 pixels have been found to be real foggy pixels, 329 and 264 pixels be clear, and 989 and 780 pixels be other type of clouds, detected by B_S1 and B_S2 respectively. The analysis of the operational COMS fog detection algorithm reveals that the cloud screening process was strictly enforced, which resulted in underestimation of foggy pixel. The 538 of total detected foggy pixels obtain only 187 of real foggy pixels, but 61 of clear pixels and 290 of other type clouds. Our analysis suggests that there is no winner for nighttime sea fog detection algorithms, but loser because real foggy pixels are less than 30% among the foggy pixels declared by all algorithms. This overwhelming evidence reveals that current nighttime sea fog algorithms have provided a lot of misjudged information, which are mostly originated from difficulty in distinguishing between clear and cloudy scene as well as fog and other type clouds. Therefore, in-depth researches are urgently required to reduce the enormous error in nighttime sea fog detection from satellite.
The essential idea of de-noising is referring to neighboring pixels of a center pixel to be updated. Conventional adaptive de-noising filters use local statistics, i.e., mean and variance, of neighboring pixels including the center pixel. The drawback of adaptive de-noising filters is that their performance becomes low when edges are contained in neighboring pixels, while anisotropic diffusion de-noising filters remove adaptively noises and preserve edges considering intensity difference between neighboring pixel and the center pixel. The anisotropic diffusion de-noising filters, however, use only intensity difference between neighboring pixels and the center pixel, i.e., local statistics of neighboring pixels and the center pixel are not considered. We propose a new connectivity function of two adjacent pixels using statistics of neighboring pixels and apply connectivity function to diffusion coefficient. Experimental results using an aerial image corrupted by uniform and Gaussian noises showed that the proposed algorithm removed more efficiently noises than conventional diffusion filter and median filter.
Padding is a technique that enables applying conventional discrete cosine transform to encode boundary blocks of arbitrarily shaped objects by assigning imaginary values to the pixels that are not included in the object. Padding prevents the increase of high frequency DCT coefficients. However, in some boundary blocks, too many padded pixels are coded due to a small portion of object pixels. To reduce the number of padded pixels and to improve coding efficiency, we propose a block merging method for texture coding. The proposed mothed searches the shape information of boundary blocks and excludes the 4$\times$4 pixels of 8$\times$8 blocks if all the 4$\times$4 pixels are in the background region, and merges the remained 4$\times$4 pixels into new 8$\times$8 blocks. Experimental results show that our proposed method yields a rate-distortion gain about 0.5~1.6㏈ compared to conventional padding method, LPE
In the case of image magnification by using interpolation methods, interpolated pixels are estimated from the known pixels in source image. The magnified image is composed of the known pixels in source image and the interpolated pixels which is estimated. If the interpolated pixels are estimated to have the locality which is exists in real images, the magnified image is much closer to the real image. In this paper, an improved interpolation scheme is proposed to estimate pixels from the known pixels in source image using the locality which is exists in real images. The magnified image by using the proposed interpolation scheme is much closer to the real image. The performance of the proposed interpolation scheme is evaluated by using PSNR(Peak Signal to Noise Ratio) in experiment. The PSNR of the magnified image by using the proposed scheme is improved than that of the magnified images by using existing interpolation methods. So, the proposed interpolation scheme is an efficient interpolation method for the quality improvement of magnified image.
In this paper, we developed a detection and correction method of noisy pixels embedded in the time series of normalized difference vegetation index (NDVI) data based on the spatio-temporal continuity of vegetation conditions. For the application of the method, 25-year (1982-2006) GIMMS (Global Inventory Modeling and Mapping Study) NDVI dataset over the Korean peninsula were used. The spatial resolution and temporal frequency of this dataset are $8{\times}8km^2$ and 15-day, respectively. Also the land cover map over East Asia is used. The noisy pixels are detected by the temporal continuity check with the reference values and dynamic threshold values according to season and location. In general, the number of noisy pixels are especially larger during summer than other seasons. And the detected noisy pixels are corrected by the iterative method until the noisy pixels are completely corrected. At first, the noisy pixels are replaced by the arithmetic weighted mean of two adjacent NDVIs when the two NDVI are normal. After that the remnant noisy pixels are corrected by the weighted average of NDVI of the same land cover according to the distance. After correction, the NDVI values and their variances are increased and decreased by 5% and 50%, respectively. Comparing to the other correction method, this correction method shows a better result especially when the noisy pixels are occurred more than 2 times consistently and the temporal change rates of NDVI are very high. It means that the correction method developed in this study is superior in the reconstruction of maximum NDVI and NDVI at the starting and falling season.
위성영상을 이용한 감독분류에서 훈련집단의 선택은 분류정확도에 많은 영향을 미친다. 일반적으로 훈련집단의 특징이 명확한 순수화소를 선택할 경우 전체 정확도가 높은 반면, 저해상도 영상이거나 식별이 불분명하여 혼합화소를 선택하면 정확도는 저하된다. 그러나 실제 영상분류를 수행할 때 순수화소만을 훈련집단으로 선택하는 것은 매우 어렵다. 이에 본 연구에서는 혼합화소를 훈련집단으로 선택하였을 경우 적합한 분류기법을 제시하고자 하였다. 이를 위해 소수의 순수화소를 훈련집단으로 선정하여 분류정확도를 산출하고 같은 수의 혼합화소를 이용한 분류결과와 정확도를 비교하였다. 연구 결과, 혼합화소를 사용한 분류기법들 중 SVM의 정확도가 가장 높았으며, 순수화소를 이용한 분류결과와도 가장 작은 차이를 보였다. 따라서 훈련집단으로 혼합화소를 선택할 가능성이 높은 건물 및 녹지혼합지역에서는 SVM을 이용한 영상분류가 가장 적합할 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.