• Title/Summary/Keyword: Pixel clustering

Search Result 78, Processing Time 0.023 seconds

Improved FCM Clustering Image Segmentation (개선된 FCM 클러스터링 영상 분할)

  • Lee, Kwang-Kyug
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.127-131
    • /
    • 2020
  • Fuzzy C-Means(FCM) algorithm is frequently used as a representative image segmentation method using clustering. FCM divides the image space into cluster regions with similar pixel values, which requires a lot of segmentation time. In particular, the processing speed problem for analyzing various patterns of the current users of the web is more important. To solve this speed problem, this paper proposes an improved FCM (Improved FCM : IFCM) algorithm for segmenting the image into the Otsu threshold and FCM. In the proposed method, the threshold that maximizes the variance between classes of Otsu is determined, applied to the FCM, and the image is segmented. Experiments show that IFCM improves performance by shortening image segmentation time compared to conventional FCM.

An Enhanced Spatial Fuzzy C-Means Algorithm for Image Segmentation (영상 분할을 위한 개선된 공간적 퍼지 클러스터링 알고리즘)

  • Truong, Tung X.;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • Conventional fuzzy c-means (FCM) algorithms have achieved a good clustering performance. However, they do not fully utilize the spatial information in the image and this results in lower clustering performance for images that have low contrast, vague boundaries, and noises. To overcome this issue, we propose an enhanced spatial fuzzy c-means (ESFCM) algorithm that takes into account the influence of neighboring pixels on the center pixel by assigning weights to the neighbors in a $3{\times}3$ square window. To evaluate between the proposed ESFCM and various FCM based segmentation algorithms, we utilized clustering validity functions such as partition coefficient ($V_{pc}$), partition entropy ($V_{pe}$), and Xie-Bdni function ($V_{xb}$). Experimental results show that the proposed ESFCM outperforms other FCM based algorithms in terms of clustering validity functions.

Effective Image Segmentation using a Locally Weighted Fuzzy C-Means Clustering (지역 가중치 적용 퍼지 클러스터링을 이용한 효과적인 이미지 분할)

  • Alamgir, Nyma;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.83-93
    • /
    • 2012
  • This paper proposes an image segmentation framework that modifies the objective function of Fuzzy C-Means (FCM) to improve the performance and computational efficiency of the conventional FCM-based image segmentation. The proposed image segmentation framework includes a locally weighted fuzzy c-means (LWFCM) algorithm that takes into account the influence of neighboring pixels on the center pixel by assigning weights to the neighbors. Distance between a center pixel and a neighboring pixels are calculated within a window and these are basis for determining weights to indicate the importance of the memberships as well as to improve the clustering performance. We analyzed the segmentation performance of the proposed method by utilizing four eminent cluster validity functions such as partition coefficient ($V_{pc}$), partition entropy ($V_{pe}$), Xie-Bdni function ($V_{xb}$) and Fukuyama-Sugeno function ($V_{fs}$). Experimental results show that the proposed LWFCM outperforms other FCM algorithms (FCM, modified FCM, and spatial FCM, FCM with locally weighted information, fast generation FCM) in the cluster validity functions as well as both compactness and separation.

Lossless Compression for Hyperspectral Images based on Adaptive Band Selection and Adaptive Predictor Selection

  • Zhu, Fuquan;Wang, Huajun;Yang, Liping;Li, Changguo;Wang, Sen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3295-3311
    • /
    • 2020
  • With the wide application of hyperspectral images, it becomes more and more important to compress hyperspectral images. Conventional recursive least squares (CRLS) algorithm has great potentiality in lossless compression for hyperspectral images. The prediction accuracy of CRLS is closely related to the correlations between the reference bands and the current band, and the similarity between pixels in prediction context. According to this characteristic, we present an improved CRLS with adaptive band selection and adaptive predictor selection (CRLS-ABS-APS). Firstly, a spectral vector correlation coefficient-based k-means clustering algorithm is employed to generate clustering map. Afterwards, an adaptive band selection strategy based on inter-spectral correlation coefficient is adopted to select the reference bands for each band. Then, an adaptive predictor selection strategy based on clustering map is adopted to select the optimal CRLS predictor for each pixel. In addition, a double snake scan mode is used to further improve the similarity of prediction context, and a recursive average estimation method is used to accelerate the local average calculation. Finally, the prediction residuals are entropy encoded by arithmetic encoder. Experiments on the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) 2006 data set show that the CRLS-ABS-APS achieves average bit rates of 3.28 bpp, 5.55 bpp and 2.39 bpp on the three subsets, respectively. The results indicate that the CRLS-ABS-APS effectively improves the compression effect with lower computation complexity, and outperforms to the current state-of-the-art methods.

Feature Extraction of Welds from Industrial Computed Radiography Using Image Analysis and Local Statistic Line-Clustering (산업용 CR 영상분석과 국부확률 선군집화에 의한 용접특징추출)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.103-110
    • /
    • 2008
  • A reliable extraction of welded area is the precedent task before the detection of weld defects in industrial radiography. This paper describes an attempt to detect and extract the welded features of steel tubes from the computed radiography(CR) images. The statistical properties are first analyzed on over 160 sample radiographic images which represent either weld or non-weld area to identify the differences between them. The analysis is then proceeded by pattern classification to determine the clustering parameters. These parameters are the width, the functional match, and continuity. The observed weld image is processed line by line to calculate these parameters for each flexible moving window in line image pixel set. The local statistic line-clustering method is used as the classifier to recognize each window data as weld or non-weld cluster. The sequential procedure is to track the edge lines between two distinct regions by iterative calculation of threshold, and it results in extracting the weld feature. Our methodology is concluded to be effective after experiment with CR weld images.

Lane Detection and Tracking Algorithm for 3D Fluorescence Image Analysis (3D 형광이미지 분석을 위한 레인 검출 및 추적 알고리즘)

  • Lee, Bok Ju;Moon, Hyuck;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • A new lane detection algorithm is proposed for the analysis of DNA fingerprints from a polymerase chain reaction (PCR) gel electrophoresis image. Although several research results have been previously reported, it is still challenging to extract lanes precisely from images having abrupt background brightness difference and bent lanes. We propose an edge based algorithm for calculating the average lane width and lane cycle. Our method adopts sub-pixel algorithm for extracting rising-edges and falling edges precisely and estimates the lane width and cycle by using k-means clustering algorithm. To handle the curved lanes, we partition the gel image into small portions, and track the lane centers in each partitioned image. 32 gel images including 534 lanes are used to evaluate the performance of our method. Experimental results show that our method is robust to images having background difference and bent lanes without any preprocessing.

Parallel clustering technology for real-time LWIR band image processing (실시간 LWIR 밴드 영상 처리를 위한 병렬 클러스터링 기술)

  • Cho, Yongjin;Lee, Kyou-seung;Hong, Seongha;Oh, Jong-woo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.158-158
    • /
    • 2017
  • 비닐포장 하부에 위치한 콩의 생장 초기에 발생한 초엽을 인식하기 위한 연구를 수행중이다. 선행 연구에서 비닐포장에 접촉한 콩 초엽으로 인해 비닐포장 상부 표면의 열 반응 분포에 변화가 있음을 발견하였다. 현장에서 주행 중에 콩 초엽의 위치를 실시간으로 인식하고 연동된 선형 또는 회전형 엑츄에이터를 제어하여 정확한 위치에 천공을 수행하기 위해서는 계측 시스템과 제어 시스템간의 시간적 차이를 최소할 수 있는 실시간 신호 처리 기술이 필수적이다. 선행 연구에서 사용한 다중 IR 센서의 분해능은 $16{\times}4pixel$이며 주파수는 3 Hz로, 폭이 30cm 내외인 비닐포장 상부의 정밀 분석에 한계가 있음을 발견하였다. 이를 해결하기 위하여 분해능과 계측 주기를 개선할 수 있는 초소형 ($1cm{\times}1cm{\times}1cm$) 열화상 센서를 이용하였다. LWIR(Longwave infrared)영역에 해당하는 $8{\mu}m{\sim}14{\mu}m$의 영역에서 $0.05^{\circ}C$의 분해능을 보이는 $ Lepton^{TM}$ (500-0690-00, FLIR, Goleta, CA)모델을 사용하였다. 프레임당 $80{\times}60$ 픽셀의 정보가 2 Byte의 단위로 계측이 되며 9 Hz의 주파수로 대상면의 열 분포를 측정할 수 있다. 이론적으로 초당 정보 전송량은 86,400 Byte ($80{\times}60{\times}2{\times}9$)이며, 1 m를 진행하는 주행형 천공기에 적용할 경우 1 프레임당 10cm 정도의 면적을 측정하므로, 최대 위치 판정 분해능은 약 10 cm / 60 pixel = 0.17 cm/pixel로 상대적으로 정밀한 위치 판별이 가능하다. $80{\times}60{\times}2Byet$의 정보를 0.1초 이내에 분석해야 하는 기술적 과제를 해결하기 위하여 천공 작업기에 적합한 상용 SBC(Single board computer)의 클럭 속도(1 Ghz)로 처리 가능한 공간 분포 분석 알고리즘을 개발하였다. 전체 이미지 도메인을 한 번에 분석하는데 소요되는 시간을 최소화하기 위하여 공간정보 행렬을 균등히 배분하고 별도의 프로세서에서 Feature를 분석한 후 개별 프로세서의 결과를 경합식으로 판정하는 기술을 연구하였다. 오픈 소스인 MPICH(www.mpich.org) 라이브러리를 이용하여 개발한 신호 분석 프로그램을 클러스터링으로 연동된 개별 코어에 설치/수행 하였다. 2D 행렬인 열분포 정보를 공간적으로 균등 분배하여 개별 코어에서 행렬의 Spatial domain analysis를 수행하였다. $20{\times}20$의 클러스터링 단위를 이용할 경우 총 12개의 코어가 필요하였으며, 초당 10회의 연산이 가능함을 확인하였다. 병렬 클러스터링 기술을 이용하여 1m/s 내외의 주행 속도에 대응이 가능한 비닐포장 상부 열 분포 분석 시스템을 구현하였다.

  • PDF

A Comparison of Superpixel Characteristics based on SLIC(Simple Linear Iterative Clustering) for Color Feature Spaces (칼라특징공간별 SLIC기반 슈퍼픽셀의 특성비교)

  • Lee, Jeong Hwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.151-160
    • /
    • 2014
  • In this paper, a comparison of superpixel characteristics based on SLIC(simple linear iterative clustering) for several color feature spaces is presented. Computer vision applications have come to rely increasingly on superpixels in recent years. Superpixel algorithms group pixels into perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid. A superpixel is consist of pixels with similar features such as luminance, color, textures etc. Thus superpixels are more efficient than pixels in case of large scale image processing. Generally superpixel characteristics are described by uniformity, boundary precision and recall, compactness. However previous methods only generate superpixels a special color space but lack researches on superpixel characteristics. Therefore we present superpixel characteristics based on SLIC as known popular. In this paper, Lab, Luv, LCH, HSV, YIQ and RGB color feature spaces are used. Uniformity, compactness, boundary precision and recall are measured for comparing characteristics of superpixel. For computer simulation, Berkeley image database(BSD300) is used and Lab color space is superior to the others by the experimental results.

Robust k-means Clustering-based High-speed Barcode Decoding Method to Blur and Illumination Variation (블러와 조명 변화에 강인한 k-means 클러스터링 기반 고속 바코드 정보 추출 방법)

  • Kim, Geun-Jun;Cho, Hosang;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.58-64
    • /
    • 2016
  • In this paper presents Robust k-means clustering-based high-speed bar code decoding method to blur and lighting. for fast operation speed and robust decoding to blur, proposed method uses adaptive local threshold binarization methods that calculate threshold value by dividing blur region and a non-blurred region. Also, in order to prevent decoding fail from the noise, decoder based on k-means clustering algorithm is implemented using area data summed pixel width line of the same number of element. Results of simulation using samples taken at various worst case environment, the average success rate of proposed method is 98.47%. it showed the highest decoding success rate among the three comparison programs.

Improved FCM Algorithm using Entropy-based Weight and Intercluster (엔트로피 기반의 가중치와 분포크기를 이용한 향상된 FCM 알고리즘)

  • Kwak Hyun-Wook;Oh Jun-Taek;Sohn Young-Ho;Kim Wook-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.1-8
    • /
    • 2006
  • This paper proposes an improved FCM(Fuzzy C-means) algorithm using intercluster and entropy-based weight in gray image. The fuzzy clustering methods have been extensively used in the image segmentation since it extracts feature information of the region. Most of fuzzy clustering methods have used the FCM algorithm. But, FCM algorithm is still sensitive to noise, as it does not include spatial information. In addition, it can't correctly classify pixels according to the feature-based distributions of clusters. To solve these problems, we applied a weight and intercluster to the traditional FCM algorithm. A weight is obtained from the entropy information based on the cluster's number of neighboring pixels. And a membership for one pixel is given based on the information considering the feature-based intercluster. Experiments has confirmed that the proposed method was more tolerant to noise and superior to existing methods.