• 제목/요약/키워드: Pitting Resistance

검색결과 218건 처리시간 0.023초

컴퓨터를 이용한 동력전달용 인벌류우트 원통치차의 설계 (Computer-Aided Design of Involute Cylindrical Gears for Power Transmission)

  • 정태형;김민수
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.594-602
    • /
    • 1990
  • 본 연구에서는 동력전달용 인벌류우트 원통치차(스퍼어 및 헬리컬 기어)의 강 도 및 각종 영향인자를 충분히 고려하면서 크기를 최소로 하는 치차장치의 설계법을 개발하고, 이 설계법을 기본으로 하여 퍼스널 컴퓨터 상에서 누구나 손쉽게 설계에 이 용할 수 있는 설계 시스템을 개발하여 그 평가를 수행한다.

알루미늄 용융 도금된 304 스테인리스강의 해수 내 전기화학적 부식 특성 평가 (Evaluation of Electrochemical Corrosion Characteristics for Hot-Dip Aluminized 304 Stainless Steel in Seawater)

  • 정상옥;박일초;한민수;김성종
    • 한국표면공학회지
    • /
    • 제48권6호
    • /
    • pp.354-359
    • /
    • 2015
  • Stainless steel has poor corrosion resistance in marine environment due to the breakdown of a passive film caused by chloride. It suffers electrochemical corrosion like pitting corrosion, crevice corrosion, and stress corrosion crack (SCC) in marine environment. In general, it indicates that the passive film of $Al_2O_3$ has better corrosion resistance than that of $Cr_2O_3$ in seawater. This paper investigated the damage behavior 304 stainless steel and hot-dip aluminized 304 stainless steel in seawater solution. Various electrochemical experiments were carried out including potential measurement, potentiodynaimic experiment, Tafel analysis and galvanostatic experiment. As a result of anodic polarization experiment, higher pitting damage depth was indicated at 304 stainless steel than hot-dip aluminized 304 stainless steel. In addition, relatively higher corrosion current density was shown at hot-dip aluminized stainless steel as a result of Tafel analysis.

침적식 화학적 제염 공정 시 원자로 냉각재 펌프용 스테인리스강의 안전성 평가 (Evaluation on Safety of Stainless Steels in Chemical Decontamination Process with Immersion Type of Reactor Coolant Pump for Nuclear Reactor)

  • 김성종;한민수;김기준;장석기
    • Corrosion Science and Technology
    • /
    • 제10권5호
    • /
    • pp.167-174
    • /
    • 2011
  • Due to commercialization of nuclear power, most countries have taken interest in decontamination process of nuclear power plant and tried to develop a optimum process. Because open literature of the decontamination process are rare, it is hard to obtain skills on decontamination of foreign country and it is necessarily to develop proper chemical decontamination process system in Korea. In this study, applicable possibility in chemical decontamination for reactor coolant pump (RCP) was investigated for the various stainless steels. The stainless steel (STS) 304 showed the best electrochemical properties for corrosion resistance and the lowest weight loss ratio in chemical decontamination process with immersion type than other materials. However, the pitting corrosion was generated in both STS 415 and STS 431 with the increasing numbers of cycle. The intergranular corrosion in STS 431 was sporadically observed. The sizes of their pitting corrosion also increased with increasing cycle numbers.

냉난방용 배관 용접부의 전기화학적 부식특성에 관한 연구 (A Study on Characteristics of the Electrochemical Corrosion of Weld Zone for Refrigerating and Heating Systems Pipe)

  • 임우조;윤병두;김환식
    • 수산해양교육연구
    • /
    • 제19권1호
    • /
    • pp.84-90
    • /
    • 2007
  • This paper was studied on the electrochemical corrosion characteristics of weld zone for refrigerating and heating systems pipe. Austenitic stainless steel is widely applied to various fields of industry, because it is good to corrosion resistance and mechanical properties. But STS 304 is reliable to sensitization by heat cycle on welding. Therefore, in this study, electrochemical polarization test of STS 304 steel pipe manufactured by arc welding in tap water was carried out. And then polarization resistance behavior, uniform and local corrosion behaviors of base metal(BM), weld metal(WM) and heat affected zone(HAZ) for STS 304 pipe were investigated. The corrosion current density of STS 304 steel pipe is high in order of BM(153nA/cm2) < WM(614nA/cm2) < HAZ ($1.675{\mu}A/cm2$). The pitting potential of HAZ(238mV/SCE) for STS 304 is lower than BM(1206mV/SCE) and WM(369mV/SCE). Therefore, the local corrosion like pitting corrosion, galvanic corrosion and crevice corrosion of HAZ for STS 304 is more sensitive than BM and WM.

Effect of the Amplitude in Ultrasonic Nano-crystalline Surface Modification on the Corrosion Properties of Alloy 600

  • Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • 제18권5호
    • /
    • pp.196-205
    • /
    • 2019
  • Surface modification techniques are known to improve SCC by adding large compressive residual stresses to metal surfaces. This surface modification technology is attracting attention because it is an economical and practical technology compared to the maintenance method of existing nuclear power plants. Surface modification techniques include laser, water jet and ultrasonic peening, pinning and ultrasonic Nano-crystal surface modification (UNSM). The focus of this study was on the effect of ultrasonic amplitude in UNSM treatment on the corrosion properties of Alloy 600. A microstructure analysis was conducted using an optical microscope (OM), scanning electron microscope (SEM) and electron backscattering diffraction (EBSD). A cyclic polarization test and AC-impedance measurement were both used to analyze the corrosion properties. UNSM treatment influences the corrosion resistance of Alloy 600 depending on its amplitude. Below the critical amplitude value, the pitting corrosion properties are improved by grain refinement and compressive residual stress, but above the critical amplitude value, crevices are formed by the formation of overlapped waves. These crevices act as corrosion initiators, reducing pitting corrosion resistance.

전해연마한 슈퍼오스테나이트 스테인리스강의 해수온도에 따른 전기화학적 특성 연구 (Investigation of the Electrochemical Characteristics of Electropolished Super Austenite Stainless Steel with Seawater Temperature)

  • 황현규;김성종
    • Corrosion Science and Technology
    • /
    • 제22권3호
    • /
    • pp.164-174
    • /
    • 2023
  • Electropolishing technology uses an electrochemical reaction and improves surface roughness, glossiness, and corrosion resistance. In this investigation, electropolishing was performed to improve the corrosion resistance of super austenitic stainless steel. As a result of electropolishing, surface roughness (0.16 ㎛) was improved by about 76.5% compared to mechanical polishing (0.68 ㎛). In addition, the electropolished surface was smooth because the average and variance values of the depth histogram were small. Tafel analysis was performed after a potentiodynamic polarization experiment with seawater temperature, and the microstructure was compared and analyzed. The corrosion current density at 30 ℃, 60 ℃, and 90 ℃ was reduced by 0.083 ㎂/cm2, 0.296 ㎂/cm2, and 0.341 ㎂/cm2, respectively. Pitting occurred in the mechanical polished specimen at 30 ℃, but partial intergranular corrosion was observed in the electropolished specimen, and pitting occurred predominantly at both 60 ℃ and 90 ℃. In addition, the damage depths of the electropolished specimen were shallower than those of mechanical polishing at 30 ℃ and 60 ℃, but the opposite result was seen at 90 ℃.

설치형 탄약 케이스의(ALDC12) 표면처리에 따른 부식 영향성 평가 (Evaluation of Corrosion Resistance according to Surface treatment of Installed Ammunition Case(ALDC12))

  • 이종현;이종현;이상봉;박혜민;유남영
    • 한국군사과학기술학회지
    • /
    • 제27권4호
    • /
    • pp.457-465
    • /
    • 2024
  • The Remote Control Munition System is a anti-personnel munitions system to replace land mines that are hard to retrieve and can inflict damage on friendly forces and civilians. As operating environments and methods change, quality improvement is necessary to ensure appropriate durability. Therefore, corrosion resistance evaluation was performed according to the surface treatment of ALDC12, the main assembly material. We conduct the potentiodynamic polarization, cyclic corrosion test to perform analysis on corrosion behavior. Additionally, we try to observe the pitting on the surface through SEM analysis. In conclusion, among the three surface treatments, Anodizing surface treatment is judged to be the most suitable for corrosion durability in a field environment.

수종 치과용 자석유지장치의 부식저항성에 대한 전기화학적 연구 (THE ELECTROCHEMICAL STUDY ON CORROSION RESISTANCE OF VARIOUS DENIAL MAGNETIC ATTACHMENTS)

  • 손병섭;장익태;허성주;곽재영
    • 대한치과보철학회지
    • /
    • 제39권4호
    • /
    • pp.336-350
    • /
    • 2001
  • The purpose of this study was to investigate corrosion tendency and to compare corrosion resistance of three dental magnetic attachments and its keeper alloy by coercive, electrochemical method. By using petentiodynamic polarization technique, magnetic elements and its keeper alloy of Magfit EX600 system(MF, MFK), Dyna ES regular system(DN, DNK) and Shiner SR magnet system(SR, SRK) were corroded electrochemically in 0.9% NaCl electrolytic solution. Open-circuit potential and anodic polarization curve was measured with Potentiostat(model 273 EG&E) and polarization curve was created by current density per square area following scanning of increased series of voltage in the rate of 1.0mV per second. Before and after electrochemical corrosion, the surface roughness test was done. Thereafter the change of mean surface roughness value(Ra) and mean peak value(Rt) of surface roughness was compared one another. In order to observe the corroded surface of each specimen, metallurgical light microscopic(${\times}37.5$) and scanning electron microscopic view(SEM ${\times}100$) was taken and compared one another. Conclusion is followings. 1. All of six covering metal of dental magnetic attachments and its keeper alloy were corroded in various degree after electrochemical corrosion. 2. The corrosion resistance of which used in this experiment is the following in high order; DNK, MFK, DN, MF, SRK and SR. 3. Especially Shiner magnet system and its keeper alloy were more severely corroded after electrochemical corrosion and the change of Ra Rt value were more increased than others. 4 Metallurgical and scanning electron microscopic view showed the pitting corrosion tendency of all experimental alloy but DNK and SR. 5. Covering metal of magnet was more corroded than its keeper alloy.

  • PDF

인발가공된 스테인리스강선의 표면특성에 미치는 Ni코팅의 영향 (Effects of Ni Coating on the Surface Characteristics of Drawed Stainless Steel Wire)

  • 최한철
    • 한국표면공학회지
    • /
    • 제36권5호
    • /
    • pp.398-405
    • /
    • 2003
  • The stainless steel wire requires good corrosion resistance and mechanical properties, such as drawing ability, combined with a high resistance to corrosion. For increasing drawing ability of stainless steel, Ni coating methods have been used in this study. However, there is no information on the electrochemical corrosion behavior of drawed wires after Ni coating. To investigate corrosion resistance and mechanical property of drawed wire, the characteristics of Ni coated wires have been determined by tensile strength tester, hardness tester, field emission scanning microscope, energy dispersive x-ray analysis and potentiodynamic method in 0.1 M HCl. The drawed stainless steel wires showed the strain-induced martensitic structure, whereas non-drawed stainless steel wire showed annealing twin in the matrix of austenitic structure. The hardness and tensile strength of drawed stainless steel wire were higer than that of non-drawed stainless steel wire. Electrochemical measurements showed that, in the case of drawed stainless steel o ire after Ni coating, the corrosion resistance and pitting potential increased compared with non-coated and drawed stainless steel wire due to decrease in the surface roughness.

슈퍼 듀플렉스 용접부에 미치는 보호가스의 영향 (The effect of shielding gases on the characteristics of super duplex weld metal)

  • 홍인표;이철환;김유기;김대순
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.209-211
    • /
    • 2005
  • Super duplex stainless steels have been used for offshore oil and gas piping systems which are subject to corrosion atmosphere, because they have excellent resistance to Stress Corrosion Cracking (SCC) and Pitting corrosion and high strength/weight ratio. Normally, the welding for duplex stainless steels has been peformed using GTAW with Ar shielding gas. However, in case of using Ar as shielding gas, the corrosion resistance at root weld metal will be deteriorated due to loss of nitrogen from weld deposit during welding. It is wellknown that the corrosion resistance of super duplex stainless can be restored by addition of nitrogen as shielding gas. In this study, we made super duplex welding with using several kinds of shielding and purging gases and investigated the relationship between shielding gas and corrosion resistance. Consequently, it was shown that corrosion resistance of weld deposit can be restored by addition of $N_{2}$ as shielding gas.

  • PDF