• Title/Summary/Keyword: Pitch Point Error

Search Result 26, Processing Time 0.025 seconds

A Study on an Integral State Feedback Controller for Way-point Tracking of an AUV (무인잠수정의 적분 상태 궤환 제어기 설계 및 경유점 추적 연구)

  • Bae, Seol B.;Shin, Dong H.;Park, Sang H.;Joo, Moon G.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.661-666
    • /
    • 2013
  • A state feedback controller with integration of output error is proposed for way-point tracking of an AUV (Autonomous Underwater Vehicle). For the steering control on the XY plane, the proposed controller uses three state variables (sway velocity, yaw rate, heading angle) and the integral of the steering error, and for the depth control on the XZ plane, it uses four state variables (pitch rate, depth, pitch angle) and the integral of the depth error. From the simulation using Matlab/Simulink, we verify that the performance of the proposed controller is satisfactory within an error range of 1m from the target way-point for arbitrarily chosen sets of consecutive way-points.

Study of the CatcherTM Couch's Usefulness (토모치료기 CatcherTM Couch의 유용성에 대한 고찰)

  • Um, Ki Cheon;Lee, Chung Hwan;Jeon, Soo Dong;Song, Heung Kwon;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.2
    • /
    • pp.65-74
    • /
    • 2019
  • Purpose: Recently, A Catcher was added to prevent sagging in Radixact® X9. In this study, We quantitatively compared general couch of Tomo-HDA® with catcher couch of Radixact® X9 using the human phantom and evaluated usefulness of catcher. Materials and methods: We used rando phantom for phantom study and set the each iso-center of head and neck region and Pelvis region for region parameter. Furthermore, We used hand made low melting point alloys for weight parameter. MVCT(Mega Voltage Computed Tomography) images were acquired for vertical error and rotation(pitch) error measurement increasing weight(A: 15kg, A+B: 30kg, A+B+C: 45kg). We selected 120 patients who has been treated using Tomotherpy machine for patient study. 60 patients has been treated in Tomo-HDA® and the other 60 patients treated in Radixact® X9. In the patient study methods, vertical error and rotation(pitch) error was measured for mean value calculation using MVCT images acquired on first day of radiation therapy. Result: Result of phantom study, Vertical error and rotation(pitch) error was increased proportionally increased as the weight increases in general couch of Tomo-HDA®. each maximum value was 7.52mm, 0.38° in head and neck region and 11.94mm, 0.92° in pelvis region. However, We could confirm that there was stable error range(0.02~0.1mm, 0~0.04°) in Catcher couch of Radixact®. Result of patient study, The head and neck region was measured 4.79mm 0.33° lower, and the pelvis region was measured 7.66mm, 0.22° lower in Catcher couch of Radixact® X9. Conclusion: In this study, Vertical error and rotation(pitch) error was proportionally increased as the weight increases in general couch of Tomo-HDA®. Especially, The pelvis region error was more increased than the head and neck region error. However, Vertical error and rotation(pitch) error was regularly generated regardless of weight or regions in CatcherTM couch of Radixact® X9 that this study's purpose. In conclusion, CatcherTM couch of Radixact® X9 can minimize mechanical error that couch sagging. Furthermore, The pelvis region is more efficiency than head and neck region. In radiation therapy using Tomotherapy machine, it is regarded that may contribute to minimizing unadjusted pitch error due to characters of Tomotherapy.

The Analysis of Motion Error in Scanning Type XY Stage (스캐닝 방식 XY 스테이지의 운동오차 분석)

  • 황주호;박천홍;이찬홍;김동익;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1380-1383
    • /
    • 2004
  • The scanning type XY stage is frequently used these days as precision positioning system in equipment for semiconductor or display element. It is requested higher velocity and more precise accuracy for higher productivity and measuring performance. The position accuracy of general stage is primarily affected by the geometric errors caused by parasitic motion of stage, misalignments such as perpendicular error, and thermal expansion of structure. In the case of scanning type stage, H type frame is usually used as base stage which is driven by two actuators such as linear motor. In the point view of scanning process, the stage is used in moving motion. Therefore, dynamic variation is added as significant position error source with other parasitic motion error. Because the scanning axis is driven by two actuators with two position detectors, 2 dimensional position errors have different characteristic compared to general tacked type XY stage. In this study 2D position error of scanning stage is analyzed by 1D heterodyne interferometer calibrator, which can measure 1D linear position error, straightness error, yaw error and pitch error, and perpendicular error. The 2D position error is evaluated by diagonal measurement (ISO230-6). The yaw error and perpendicular error are compensated on the base stage of scanning axis. And, the horizontal straightness error is compensated by cross axis compensation. And, dynamic motion error in scanning motion is analyzed.

  • PDF

A User-friendly Remote Speech Input Method in Spontaneous Speech Recognition System

  • Suh, Young-Joo;Park, Jun;Lee, Young-Jik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.2E
    • /
    • pp.38-46
    • /
    • 1998
  • In this paper, we propose a remote speech input device, a new method of user-friendly speech input in spontaneous speech recognition system. We focus the user friendliness on hands-free and microphone independence in speech recognition applications. Our method adopts two algorithms, the automatic speech detection and the microphone array delay-and-sum beamforming (DSBF)-based speech enhancement. The automatic speech detection algorithm is composed of two stages; the detection of speech and nonspeech using the pitch information for the detected speech portion candidate. The DSBF algorithm adopts the time domain cross-correlation method as its time delay estimation. In the performance evaluation, the speech detection algorithm shows within-200 ms start point accuracy of 93%, 99% under 15dB, 20dB, and 25dB signal-to-noise ratio (SNR) environments, respectively and those for the end point are 72%, 89%, and 93% for the corresponding environments, respectively. The classification of speech and nonspeech for the start point detected region of input signal is performed by the pitch information-base method. The percentages of correct classification for speech and nonspeech input are 99% and 90%, respectively. The eight microphone array-based speech enhancement using the DSBF algorithm shows the maximum SNR gaing of 6dB over a single microphone and the error reductin of more than 15% in the spontaneous speech recognition domain.

  • PDF

An experimental study on the generative elements of feed errors in CNC cylindrical grinding machine (CNC 원통연삭기 이송오차의 발생요인에 관한 실험적 연구)

  • Ko, Hai-Ju;Jung, Yoon-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.62-69
    • /
    • 1993
  • The accuracy of machine tools is the major factor concerned with the acuracy of the processed work. The feed errors of feed system in machine tool, therfore, make the machining errors of work directly on processing. In this point, this study focused on the generative elements of feed errors in CNC cylindrical grinding machine, such as supporting method of ball screw, the effect of pitch and yaw error and the position detecting method in servo system when operating its shaft of grinding wheel head. Furthermore, in order to improve the driving accuracy of this machine tool, feed errors are measured by a laser interferometer. Results obtained in this study provide some useful informations to attain high accuracy of CNC machine tool.

  • PDF

A Study on Tooth Profile Error in Internal Gear Shaping (내치차 절삭시의 치형오차에 관한 연구)

  • 박천경;최영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.154-162
    • /
    • 1991
  • In this study, the simulation program is developed where the tooth profile error in internal gear shaping is calculated considering several factors which affect it. This factors are the circular feed of the pinion cutter, the interference by the geometric conditions of the cutter and the internal gear, the deviation from the theoretical involute profile of the cutter and the eccentricity of the cutter and the internal gear. With this program, the effects are investigated which the geometric conditions and the cutting conditions in internal gear shaping have on the tooth profile error of the internal gear. The condition for the minimization of it is derived and then the results of simulation are adequately verified by measurements of internal gears cut by a pinion cutter.

Compensation of Five DOF Motion Errors in a Ultra Precision Hydrostatic Table Using the Active Controlled Capillaries (능동제어모세관을 이용한 초정밀 유정압테이블의 5 자유도 운동 오차 보정)

  • Park C.H.;Oh Y.J.;Lee H.;Lee D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.769-772
    • /
    • 2005
  • Five DOF motion errors of a hydrostatic bearing table driven by the coreless type linear motor were compensated utilizing the active controlled capillaries in this study. Horizontal linear motion and yaw error were simultaneously compensated using two active controlled capillaries and vertical linear motion, pitch and yaw error were also simultaneously compensated using three active controlled capillaries. By the compensation, horizontal linear motion accuracy and yaw were improved from 0.16 ${\mu}m$ and 1.96 arcsec to 0.02 ${\mu}m$ and 0.03 arcsec. Vertical linear motion accuracy, pitch and roll were also largely improved from 0.18 ${\mu}m$, 2.26 arcsec and 0.14 arcsec upto 0.03 ${\mu}m$, 0.07 arcsec and 0.02 arcsec. The compensated motion errors were within the range of measuring repeatability which was ${\pm}0.02\;{\mu}m$ in the linear motion and ${\pm}0.05$ arcsec in the angular motion. From these results, it is found that the motion error compensation method utilizing the active controlled capillaries are very effective to improve the five motion accuracies of the hydrostatic bearing tables.

  • PDF

Design and Control of Ball Robot capable of Driving Control by Wireless Communication (무선통신을 이용한 주행 제어가 가능한 볼 로봇의 설계 및 제어)

  • Lee, Seung-Yeol;Jeong, Myeong-Jin
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1236-1242
    • /
    • 2019
  • Recently, according to improvement of robot technology, research for mobile robot is increasing. Mobile robot having 2-wheels or 4-wheels is easy for straight driving but is difficult for direction change and rotation. So, ball robot having one contact point with base is interested by researchers. By characteristics of the one contact, ball robot is required the balancing and driving control. In this paper, smart phone application, which is usable for control by wireless communication, is proposed. The ball robot having the proposed smart phone application is designed and manufactured. Balancing and driving control by wireless communication is conducted. From the test, it is conformed that ball robot has the control performances as roll angle error is ±0.8deg, pitch angle error is ±0.7deg, x-axis position error is ±0.1m, and y-axis position error is ±0.08m for 1m driving control.

Dynamic Analysis of a Gear Driving System with Time-varying Mesh Stiffness/Damping and Friction (변동물림강성/감쇠와 마찰을 고려한 기어구동계의 동특성 해석)

  • Kim, Woo-Hyung;Jung, Tae-Il;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.224-231
    • /
    • 2006
  • A six-degree-of-freedom dynamic model with time-varying mesh stiffness/damping and friction has been developed for the dynamic analysis of a gear driving system. This model includes a spur gear pair, bearing, friction and prime mover. Using Newton???s method, equations of motion for the gear driving system were derived. Two computer programs are developed to calculate mesh stiffness, transmission error and friction force and analyze the dynamics of the modeled system using a time integration method. The influences of mesh stiffness/damping, bearing, and friction affecting the system were investigated by performing eigenvalue analysis and time response analysis. It is found that the reduction of the maximum peak magnitude by friction is decided according to designing the positions of pitch point and maximum peak in the responses.

  • PDF

Design Considerations of Auditory Feedback for Enhancing The Usability of Portable Digital Electronic Products (휴대용 디지털 전자제품의 사용성 향상을 위한 청각적 피드백의 고려)

  • Kim, Hyeong-Seok;Park, Min-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.51-60
    • /
    • 2000
  • Non-verbal sound feedback, called earcon, has been used for portable digital electronic products to give appropriate information for the selected function. This study evaluated usability based on user cognition time, error rate, and subjective satisfaction using 20 male and female subjects. The study compared five major user functions from a portable digital electronic product with currently available earcons and the same functions from the product with the new earcons (suggested by this study) which considered user cognitive characteristics, such as loudness, pitch, melody, and length. For subjective evaluation, the study assessed various earcons by subjective impression of sounds using the seven-point rating scales. Major statistical results indicated that the new earcons significantly reduced user error rates and generally improved user performance functions, such as 'play, off, stop, fast forward, and rewind.'

  • PDF