• Title/Summary/Keyword: Piston engine

Search Result 465, Processing Time 0.022 seconds

The behavior of swirl and tumble ratio in the combustion chamber of 4-valve engine with valve positions (밸브위치에 따른 4밸브 엔진 연소실 내부의 스월비와 텀블비의 거동)

  • Kim, Sung-Joon;Lee, Chon-Sik;Chun, Bong-Jun;Lee, Yong-Il
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.51-57
    • /
    • 1999
  • This research has an object to find out how the position of inlet valve influence swirling and tumbling of turbulence inside the combustion chamber of 4 valve engine. The computational analysis of three dimensional complicated turbulence flow in the cylinder is done by the KIVA-3V program to carry out this object. One use 6 valve positions with the bowl type of piston cavity. The swirl ration and the tumbling ratio of flow filed are evaluated quantitatively to find out how each valve position influence flow phenomena in the combustion chamber during the intake and compression processes.

  • PDF

A Study on Turbulent Flame Propagation Model of S. I. Engines (스파크 점화기관의 난류 화염전파모델에 관한 연구)

  • 유욱재;최인용;전광민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2787-2796
    • /
    • 1994
  • The modeling of combustion process is an important part in an engine simulation program. In this study, calculated results using a conventional B-K model and the other model which is called GESIM were compared with experimentally measured data of a three-cylinder spark-ignition engine under wide range of operating conditions. The burn rates calculated from the combustion models were compared with the burn rate calculated from the one-zone heat release analysis that uses measured pressure data as an input data. As a result of the two models' comparison, the GESIM combustion model conformed to be closer to the data acquired from the experiment in wide operating ranges. The GESIM model has been improved by introducing a variable that considers the flame size, the area of flame conacting the piston surface into the model, based on the comparison between the experimental result and the calculated results. The improved combustion model predicts experimental results more precisely than that of GESIM combustion model.

Analysis of the Impinging Spray Behavior Accompanying with Change of Phase (상변화를 동반한 충돌분무의 거동해석)

  • Song, Hong-Jong;Cha, Keun-Jong;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.852-859
    • /
    • 2000
  • The emission in the exhaust gas from diesel engine is effected by the fuel spray characteristics. The spray of D.I. diesel engine impinges on a piston cavity and a cylinder wall. It is very important to know exactly the distribution and behavior of the spray inside cylinder. The objective of this study is to develop more accurate evaporation model. The EPISO code was used to analyze the flow characteristics in the engine. The Wakil model and the Faeth model are applied to the EPISO code to analyze the behavior of impinging spray. And also experimental and numerical analysis were carried out. The spray behavior characteristics were investigated by changing injection pressure, ambient pressure and temperature. The behavior of impinging spray was strongly effected by the change of ambient pressure and temperature. The effects of evaporation and rebounding droplet should be considered.

Combustion Characteristics of Hypersonic SCRamjet Engine (극초음속 스크램제트 엔진의 연소특성)

  • Won, Su-Hee;Jeong, Eun-Ju;Jeung, In-Seuck;Choi, Jeong-Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.159-165
    • /
    • 2003
  • This paper describes numerical efforts to characterize the flame-holding and air-fuel mixing process of model SCRamjet engine combustor, where a hydrogen jet injected into a supersonic cross flow and in a cavity. Combustion phenomena in a model SCRamjet engine, which has been experimentally studied at University of Queensland and Australian National University using a free-piston shock tunnel, was observed around separation region of upstream of the normal injector and inside of cavity. The results show that the separation region and cavity generates several recirculation zones, which increase the fuel-air mixing. Self ignition occurs in the separation-freestream and cavity-freestream interface.

  • PDF

Modeling of Hydrocarbon Emissions from Spark Ignition Engines (스파크 점화기관의 탄화수소 배출 모델링)

  • 고용서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.58-71
    • /
    • 1996
  • A model which calculates the hydrocarbon emissions from spark ignition engines is presented The model contains the formation of HC emissions due to both crevices around piston ring top land and oil films on the cylinder wall. The model also considers in-cylinder oxidation and exhaust port oxidation of desorbed HC from crevices and oil films after combustion process. The HC emissions model utilizes the results of SI engine cycle simulation. The model predicts well the trends of HC emissions from the engines when varying engine parameters.

  • PDF

The Effects of Tunable Helmholtz Resonators on the Volumetric Efficiency in a Multi-cylinder Diesel Engine (가변 헬름홀츠 공진기가 다기통 디젤기관의 체적효율에 미치는 영향)

  • Kang, H.Y.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.26-32
    • /
    • 2005
  • The volumetric efficiency is significantly affected by the behavior of pressure wave in induction system and exhaust pipe. By the motion of the piston, there exist pressure fluctuation in induction system which produce waves. Waves are propagated along a pipe bi-directional as they propagated through it, making compression wave and rare-faction(expansion) wave. These wave phenomena can affect to the volumetric efficiency. As a method of improvement of the volumetric efficiency, fuel economy and pollutant emission reduction particularly in low engine speeds, a side-branch additional tunable helmholtz resonator on the secondary pipe of intake system is proposed by use of their acoustic vibrations. Some of results are presented which deal with their physical phenomena for the wave action of intake system in a four-stroke three cylinders diesel engine.

  • PDF

A Study on the Characteristics of Flow through a Valve using Exhaust System Engine Simulator (기관 배기계 모의실험장치를 이용한 밸브를 통과하는 유동특성에 관한 연구)

  • 차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.124-130
    • /
    • 1999
  • Flow characteristics of a compressible gas flow through a rotating disc-type rotary valve are investigated experimentally under various conditions. It is known that the mass flow rate through poppet valves of 4-stroke cycle engines and through piston valves of 2-stoke cycle engines decrease with increase in engine speed. Rotary valve is one means by which air may be made to flow inter-mittently through a pipe. In this paper an exhaust system simulator of engine was used to experi-mentally analyze the decrease in flow rate at high rotation speeds and to determine what variables other than rotational speed give rise to the observed behaviour. These variables have been included in an empirical equation which is representative of the measured flow characteristics.

  • PDF

The Size Analysis of Raised Lands Prepared for Spray Impaction in OSKA Typed D.I. Diesel Engine Combustion Chamber (OSKA형 디젤기관 연소실의 충돌면 크기 분석)

  • 김재휘;홍영표;박권하
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.82-90
    • /
    • 1996
  • In a diesel engine the phenomenon of spray impaction on a chamber wall has been taken as an undesirable matter because of the deposition of fuel on the surfaces, and the subsequent slow evaporation and mixing with air resulting in unburned hydrocarbons. Therefore many researches have concentrated on avoiding fuel impingement on surfaces. On the contrary done a number of studies using spray wall impactions in a positive way, which makes the droplets smaller, changes the direction into free spaces far from the wall and also improves mixing with air. In this paper the size of the impaction site prepared for the injection spray which is raised from the bottom in the piston bowl center is analysed as both simulative and experimental manner.

  • PDF

A Study on Optimum Reheating Process of Automotive Aluminum Piston using Neural Network and the Taguchi Method in Semi-Solid forming (반용융 성헝에서의 다구찌 방법과 신경망을 이용한 자동차 알루미늄 피스톤의 최적 재가열 과정에 대한 연구)

  • 윤재민;김영호;박준홍;최재찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.902-905
    • /
    • 2000
  • As the manufacturing processes of automotive engine piston, gravity die-casting, squeeze casting, hot forging and powder forging process are generally used for the various specifications. As the semi-solid forming(SSF) is compared with conventional casting such as gravity die-casting and squeeze casting for the characteristics of its process, the product without inner defects such as gas porosity and segregation can be obtained and its microstructure is globular grain. In SSF process, the materials are heated up to the temperature between the solvus and liquidus line at which the materials exists in the form of liquid-solid mixture. In this time, Discussion is given about reheating process of row material and results are presented regarding accurate temperature and process variables controlling for right solid fractions.

  • PDF

A Study on the Numerical Analysis of Behavior of Spray Droplets and Internal Flow Field of Cylinder in Diesel Engine (디젤기관의 실린더내 유동 및 분무액적 거동의 수치적 연구(I))

  • 장영준;박호준;전충환;김진원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.35-46
    • /
    • 1992
  • In this study, we calculated gas flow fields and distribution of fuel droplet and mass fraction using the CONCHAS-SPRAY code which modified to execute in IBM PC and changed three important factors, injection rate pattern (BASIC, I, II, III), different bowl shape and spray type. Especially vortices which be influenced by fuel-air mixing process, evaporation and flame propagation are generated more strongly in the bowl-piston type combustion chamber than in the flat-piston type. As the spray type changes, it is found that conical type produced large and strong vortices and fuel droplets are effictively diffused into the entire combustion chamber. As the injection rate pattern changes I, II, III based on BASIC type, we confirmed that End-of-Injection Effect strongly influence on droplets life time.

  • PDF