• Title/Summary/Keyword: Piston Speed

Search Result 256, Processing Time 0.029 seconds

A study on the behavior of the piston with orifice hole in the cylinder of a gas spring (가스스프링 실린더내의 오리피스 홀을 갖는 피스톤 거동에 관한 연구)

  • Jeong, Nam-Gyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.125-130
    • /
    • 2019
  • A gas-spring has been used in many areas and its use is increasing because it can be designed for a range of purposes. In this study, the behavior of a piston with an orifice hole inside the gas-spring cylinder was predicted using computational fluid dynamics (CFD). The piston was designed to reduce the reaction force if the gas-spring is compressed and to move at a low speed when it is returned. The analysis showed that if the initial gas pressure in the gas-spring is increased to a certain level, the speed of the piston would not decrease with time but will remain constant. The effects of orifice hall size on the piston return speed were investigated. Reducing the size of the orifice hole will increase the pressure difference on both sides of the piston, reduce the piston speed, and make it more constant. On the assumption of a constant speed of the piston, a theoretical solution to the return speed of the piston was derived according to the initial gas pressure, and the results for several initial gas pressures were compared with those of CFD. Comparison studies showed similar results for both methods.

Analysis of Piston Seal in High-Speed Pneumatic Cylinders (고속 공기압 실린더의 피스톤 실 특성 해석)

  • Zhang, Z.J.;Kim, D.T.;Han, S.S.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.99-104
    • /
    • 2010
  • Nonlinear seal friction in pneumatic cylinders can impede the performance of pneumatic systems designed for high precision positioning with favorable high speed actuation. The behaviour of an elastomeric piston seal in high speed pneumatic cylinders is analysed by nonlinear finite element analysis using ABAQUS. The contact pressures, stress and strain distributions and frictional forces of the piston seal are simulated with variation of interference fits, supply pressures, friction coefficients and piston rod velocities. The nonlinear finite element model of the piston seal is used to predict deformation of a seal, friction force and contact pressure distributions.

  • PDF

Friction Characteristics of piston Skirt Parametric Investigation

  • Cho, Myung-Rae;Kim, Jee-Woon;Moon, Tae-Sun;Han, Dong-Chul
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The purpose of this paper is to investigate the effects of design parameters on the friction loss in piston skirt. An analytical model to describe the friction characteristics of piston skirt has been presented, which is based on the secondary motion of piston and mixed lubrication theory, It could be shown that the skirt friction closely depends on the side force acted on the piston pin. The side force is inf1uenced by cylinder pressure at low engine speed, but by inertia force at high engine speed. The usage of extensive skirt area and low weight piston is effective to reduce the friction loss at high speed. The low viscosity oil considerably decreases viscous friction as engine speed increases, but it increases boundary friction at low engine speed. From the parametric study, it is found that the skirt axial profile is the most important design parameter related to the reduction of skirt friction.

Simulation of Secondary Motion of Piston Assemblies (피스톤 어셈블리의 2차 운동에 관한 시뮬레이션)

  • 오병근;조남효
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.231-243
    • /
    • 2000
  • This paper describes a simulation of secondary motion of piston assemblies using PISDYN by Ricardo. Motions of the piston, pin, rod and skirt are separately calculated, by integrating equations of motion for individual components and dynamic degrees of freedom. The effects of engine speed at full load and pin offsets on the piston assembly secondary motions, forces and friction were investigated in parametric study for 4-cylinder gasoline engine. Results show that lateral displacement and friction loss of the piston increase as a function of engine speed. The lateral motion of the piston is affected by the change in pin offset. The minimum friction loss for the condition of 4800rpm WOT occurs at a pin offset of 1.6mm.

  • PDF

The Influences of Factors on Turbulence Intensity in Combustion Chamber (연소실내의 난류강도에 미치는 각종 인자의 영향)

  • 한성빈;이상준;이종태;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.793-804
    • /
    • 1994
  • Turbulence intensity caused by piston movement was almost as same tendency as the piston speed. The turbulence intensity was increased from 0.39m/s to 0.79m/s when mean piston speed increased from 2.33m/s to 4.67m/s. In this case the maximum turbulence intensity caused by piston speed was decreased about 82 percent near the top dead center at the end of compression stroke. The maximum turbulence intensity was created from 12m/s to 22m/s when inlet flow velocity was increased from 22m/s to 45m/s. Also turbulence intensity caused by inlet flow velocity was linearly increased from 0.97m/s at top dead center at the end of compression stroke. The ratio of turbulence intensity and mean inlet flow velocity was about 3 percent for inlet flow velocity.

A Study on the Characteristics of Volumetric Efficiency of an Axial Piston Pump considering Piston Tilting

  • Park, In-Kyu;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • v.10 no.1_2
    • /
    • pp.37-42
    • /
    • 2009
  • This paper presents the characteristics of volumetric efficiency of an axial type piston pump considering the piston tilting. A numerical analysis is carried out in order to obtain the pressure distribution considering the fluid inertia at the notch of the valve plate. The cylinder pressure variation and the discharge flow rate are measured experimentally according to the operating conditions such as supply pressure, rotational speed, and viscosity of the working fluid by using the cam type test apparatus. Leakage is also measured considering piston tilting. The characteristics of the volumetric efficiency are analyzed with respect to various operating conditions and leakage is also analyzed according to the piston tilting angle. Results are applicable to improve the design of an axial type piston pump.

A study on the behavior of the piston with varying friction force in the double cylinder-typed extension gas spring (2중 실린더 구조를 갖는 인장 가스스프링의 마찰력 변화에 따른 피스톤 거동에 대한 연구)

  • Jeong, Nam-Gyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.9-14
    • /
    • 2018
  • The function of gas springs is based on the compression of a gas. They are used in a wide variety of industries, and demand for them is increasing. Gas springs can be divided into compression and extension springs. Extension springs have not been studied much in relation to control of the piston speed, unlike compression springs. In this study, the magnitude of the piston rebound pressure was theoretically predicted by calculating the pressure loss in a double-cylinder extension gas spring. Numerical simulations of the piston behavior were carried out for small and large amounts of friction between the piston and the cylinder. FLUENT was used for the simulation with a 6-DOF model and UDF to simulate the behavior of the piston. The calculation regions of the front and rear of the piston were separated, and different types of grids were generated in the regions to implement a dynamic mesh using only a layering method. The results show that the piston returns with the target speed in both cases. However, the patterns of the piston behavior reaching the final speed are different.

The Characteristics of High-speed Noncircular Machining Tool Feed Systme using Linear Motor (리니어 모터를 이용한 고속비진원 가공용 공구이송장치의 특성연구)

  • 서준호;민승환;김성식;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.985-990
    • /
    • 1995
  • Recently, the development of high speed and high precision NC-lathe for piston head machining is needed for the complexity and diversity of the piston head shape used in automobile reciprocating engine. THe piston head has many complex shapes in the aspect of fuel economy, such as ovality, profile, double ovality and recess. Among them, for the maching of the over shape of 0.1~1mm the cutting tool should move periodically symchronized with the rotation of piston workpiece. The cutting tool feeed system must have high positioning accuracy for the precise machining, high speed for the fast maching and high dynamic stiffness for the cutting force. The linear brushless DC motor is used for satisfying these coditions. The ballbush guide and supporting guide using turcite is used for the guidance of the feed drive system. Linear encoder, digital servo ampllifer and controller are used for driving the motor. THis paper presents the design and simulation of the new tool feed system for noncircular machining.

  • PDF

The Friction Characteristics with Variation of Cross Section of Piston Seals for High Speed Pneumatic Cylinders (고속 공기압 실린더의 피스톤 실 단면형상 변화에 따른 마찰특성)

  • Kim, D.T.;Zhang, Z.J.
    • Journal of Drive and Control
    • /
    • v.9 no.1
    • /
    • pp.18-24
    • /
    • 2012
  • The paper deals with the design of a new low-friction seal for a pneumatic cylinder with high speed actuation. The seal performance with variation of the cross sections in piston seals with elastomeric material was investigated to minimize the friction forces using ABAQUS. The contact stress and strain distributions and frictional forces of the piston seals were investigated with variation of interference fits, supply pressures and friction coefficients. To develop adequate and productive procedures, the finite element models of the piston seals were created and nonlinear analysis of a seal design was conducted in order to build further knowledge and understanding of the seal's performance characteristics.

An experimental study on piston temperature measurement at various locations in a S.I. engine utilizing L-LINK mechanism (L-LINK를 이용한 S.I.엔진 피스톤 각 부위의 온도측정에 대한 실험적 연구)

  • 김승수;김지연
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.55-65
    • /
    • 1987
  • This paper presents the method of piston temperature measurement and its data under various engine operating conditions. In case of high speed engine, the thermocouple wires must be guided from moving piston to stationary place with carful attention. for this purpose L_LINK SYSTEM was made and assembled to a passenger car engine on the test bench and then the piston temperature was successfully measured. The tested engine speed ranged from 1,000 to 4,000 rpm with 500 rpm increments. Not only the effects of engine speed and load on the piston temperature but those of spark timing, detonation, coolant temperature and Reynolds number based on inlet air condition were studied form the measurement obtained by this L_LINK SYSTEM.

  • PDF