• Title/Summary/Keyword: Pirenzepine

Search Result 32, Processing Time 0.022 seconds

Ligand Binding Properties of Muscarinic Acetylcholine Receptors in Caenorhabditis elegans

  • You, Suck-Jong;Choi, Jung-Do;Cho, Nam-Jeong
    • BMB Reports
    • /
    • v.29 no.6
    • /
    • pp.525-529
    • /
    • 1996
  • Ligand binding properties of muscarinic acetylcholine receptors (mAChRs) in the nematode Caenorhabditis elegans (C. elegans) were characterized by using filtration binding assays. Scatchard analysis using $[^{3}H]N-methylscopolamine$ ($[^{3}H]NMS$) showed that the dissociation constant ($K_d$) and the maximum binding value ($B_{max}$) were $3.3{\pm}0.8{\times}10^{10}$ M and $9.0{\pm}1.1$ fmol/mg protein, respectively. Binding competition experiments indicated that the affinities of C. elegans mAChRs to atropine, scopolamine, and oxotremorine were similar to those of mammalian mAChRs. Pirenzepine binding experiments revealed that the binding pattern of mAChRs in C. elegans closely resembled that of mAChRs in rat brain, suggesting that the receptors consist primarily of Ml subtype. The affinity of mAChRs for oxotrernorine was significantly affected by guanylylimidodiphosphate (Gpp(NH)p), a non hydrolyzable GTP analog, suggesting that mAChRs in C. elegans might be coupled to G proteins. The data presented here indicate the possibility that C. elegans provides a living animal model to study the action mode of the muscarinic cholinergic system.

  • PDF

The characteristics of cholinergic responses in tilapia dorsal aorta (틸라피아 배대동맥의 콜린성 반응의 특성)

  • Choi, Dong-Lim;Chung, Joon-Ki
    • Journal of fish pathology
    • /
    • v.9 no.1
    • /
    • pp.53-63
    • /
    • 1996
  • The present study was undertaken to investigate the physiological characteristics of the cholinergic responses in the tilapia dorsal aorta. In vessels under resting tension or precontracted with norepinephrine, acetylcholine caused only concentration-dependent vasoconstrictions. Contractile response to acetylcholine was not affected by the removal of endothelium or the application of methylene blue. Atropine, gallamine or pirenzepine shifted concentration-response curve to the right. However pirenzepine showed a similar effect on the curve only at high concentration ($1{\times}10^{-5}$M). Acetylcholine-induced vasoconstriction was not markedly influenced by indomethacin, or verapamil, but was almost abolished in the calcium-free physiological buffer solution. These results suggest that acetylcholine produces only an endothelium-independent vasoconstriction in tilapia dorsal aorta and that the contractile effect of acetylcholine is mainly mediated by the activation of $M_2$ subtype receptor, which might be associated with the extracellular calcium influx through receptor-linked calcium channel.

  • PDF

부신에서의 catecholamine분비작용 기전 검색(pentazocine에 의하여)

  • 임동윤;고석태
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.284-284
    • /
    • 1994
  • Pentazocine은 opioid 수용체에 대한 흥분작용과 길항작용을 겸유한 opioid계 약물로 알려져 있다. 본 연구에서 흰쥐 적출 관류부신 으로 부터 pentazocine의 catecholamine (CA) 분비작용을 관찰하여 그 기전을 규명하고 또한 다른 opioid의 작용과 비교하여 얻어진 결과는 다음과 같다. Pentazocine (30-300$\mu\textrm{g}$)을 부신정맥내에 주사하였을때 현저한 용량 의존성의 CA 분비 작용을 나타내었다. Pentazocine의 이러한 CA 분비작용은 chlorisondamine ($10^{-6}$M), naloxone (1.22 $\times$ $10^{-7}$M), morphine (1.73 $\times$ $10^{-5}$M). enkephalin (9.68 $\times$$10^{-6}$M), nicardipine ($10^{-6}$M) 및 TMB-8 ($10^{-5}$M)등의 전처치로 뚜렷이 억제되었으나 pirenzepine (2 $\times$ $10^{-6}$M)의 전처치에 의해서는 영향을 받지 않았다. $Ca^{++}$-free Krebs 용액으로 30분간 관류한 후에 pentazocine의 CA 분비작용은 현저한 감소를 나타내었다. Pentazocine (1.75 $\times$ $10^{-4}$M)을 20분간 관류시킨 후에 ACh (5.32 $\times$ $10^{-3}$M)과 DMPP ($10^{-4}$M)에 의한 CA 분비작용이 의의있게 감약되었다.

  • PDF

횐쥐 적출 관류부신을 이용한 Catecholamine 분비작용의 검색방법

  • 고석태;임동윤
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1992.05a
    • /
    • pp.38-38
    • /
    • 1992
  • 횐쥐 적출 완류부신을 이용하여 neuronal nicotinic(NN) agonist인 DMPP와 M1-muscarinic agonist인 McN-A-343의 카테콜아민(CA) 분비 작용의 차이와 특성에 대해서 연구한 결과는 다음과 같다. DMPP (100 $\mu$M)와 McN-A-343(100 $\mu$M)은 부신정맥내로 투여시 유의한 카테콜아민 분비작용을 나타내었다. Mol농도로 비교시 McN-A-343의 CA분비작용은 DMPP의 약 1/5정도였다. DMPP의 CA분비작용은 chlorisondamine이나 desipramine 또는 $Ca_2$$^{2}$-free Krebs + EGTA 관류등의 전처치로 의의있게 억제되었으나, pirenzepine, ouabain 및 physostigmine등 전처치에 의해서는 영향을 받지않았다. 그러나 atropine 전처치시 DMPP의 분비작용은 오히려 증강되었다.

  • PDF

Changes of M1 muscarinic receptor mRNA and $[^3H]$ pirenzepine receptor binding in the brain of sensitized mice by methamphetamine administration

  • Kim, Kyung-In;Yoo, Ji-Hoon;Cho, Jae-Han;Im, Ki-Dong;Lee, Seok-Yong;Lee, Sun-Bok;Jang, Choon-Gon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.84.1-84.1
    • /
    • 2003
  • Methamphetamine is a powerful stimulant that appears to produce locomotor activity and behavioral sensitization. Previous study has indicated that dopaminergic receptors are implicated in the behavioral responses of methamphetamine. Recently, it has been reported that other receptors, especially, M1 muscarinic acetylcholine receptor (M1R) plays an important role in the regulation of behavioral responses, and this receptor is abundantly expressed in brain regions, including the cerebral cortex, striatum, and the hippocampus of the animal. (omitted)

  • PDF

Influence of Blockade of Sympathetic Nervous System, Renin-Angiotensin System, and Vasopressin System on Basal Blood Pressure Levels and on Pressor Response to Norepinephrine, Angiotensin II, and Vasopressin (교감신경계, Renin-Angiotensin계, Vasopressin계의 차단이 혈압 및 Norepinephrine, Angiotensin II 및 Vasopressin의 승압효과에 미치는 영향)

  • Chung, Haeng-Nam
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.61-74
    • /
    • 1992
  • Influence of the blockade of the three major pressor systems-sympathetic nervous system (SNS), renin-angiotensin system (RAS) and vasopressin system-on the pressor responsiveness to norepinephrine (NE), angiotensin II (AII), and vasopressin (VP) as well as on basal blood pressure (BP) levels was investigated in urethane-anesthetized rabbits. To block the SNS and RAS, chlorisondamine (CS) and pirenzepine (PZ), sympathetic ganglionic blockers, and enalapril (ENAL), an inhibitor of angiotensin converting enzyme, respectively were used. And for suppressing the VP system bremazocine (BREM), a kappa opiate receptor agonist shown to suppress plasma levels of VP, was employed. Each of CS (0.4 mg/kg), ENAL (2 mg/kg), and BREM (0.25 mg/kg) produced almost same levels of steady hypotensive state. The hypotensive effect of BREM was significantly attenuated by desmopressin, a synthetic VP-like analogue, suggesting the hypotension being at least in part due to suppression of plasma levels of VP. CS, ENAL and BREM elicited further fall of the BP which had been lowered by ENAL or BREM, CS or BREM, and CS or ENAL, respectively. The hypotension produced by both CS and PZ together with either of ENAL or BREM was more marked than that produced by the three drugs other than CS. CS potentiated the pressor response not only to NE but to AII and VP. The pressor effect of AII was increased by ENAL and BREM, too. The pressor response to VP was also enhanced by BREM. Blockade of ${\alpha}-adrenergic$ receptors with phentolamine or phenoxybenzamine potentiated the pressor response to AII and that to VP. The results on basal BP levels indicate that the three major pressor systems are all participating in control of BP, but SNS has the greatest potential for supporting BP. The finding that blockade of one of the pressor systems induced enhanced pressor responsiveness to the pressor hormone of that particular system as well as to the pressor hormone(s) of the other systems(s) provides evidence for important interactions among the three major pressor systems.

  • PDF

Pressor Action of Intracerebroventricular Nicotine and Muscarine in the Rabbit (가토 측뇌실내 Nicotine 및 Muscarine의 혈압상승작용에 관하여)

  • Lee, Choong-Kyoung
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.21-31
    • /
    • 1991
  • When administered intracerebroventricularly (icv), cholinergic nicotinic agents, nicotine and DMPP, as well as cholinergic muscarinic agents, muscarine and bethanechol, produced pressor responses in urethane-anesthetized vagotomized rabbits. The response patterns to nicotine and to DMPP were similar, while the bethanechol response resembled the muscarine pattern. The pressor response to nicotine and DMPP was markedly inhibited by icv mecamylamine but not by icv pirenzepine, whereas the response to muscarine and bethanechol was inhibited by icv pirenzepine but not by icv mecamylamine, suggesting that both nicotinic and muscarinic receptors in the brain are involved in the action. Intravenous pretreatments of animals with regitine, reserpine, enalapril, saralasin, both regitine and enalapril, both regitine and saralasin, SK&F-100273 did not prevent the pressor response to nicotine and muscarine. Iv pretreatments with both regitine and SK&F-100273 inhibited the nicotine response without affecting the muscarine response, whereas pretreatments with three agents, regitine, enalapril and SK&F-100273, inhibited the muscarine response. The nicotine-induced elevated blood pressure as well as the muscarine-induced were lowered by regitine but not by enalapril or by SK&F-100273. Enalapril was without effect on the nicotine hypertension in rabbits treated with regitine or both regitine and SK&F-100273, whereas SK&F-100273 lowered the nicotine hypertension in regitine-treated animals. Enalapril did not enhance the lowering effect of SK&F-100273 in regitine-treated ones, nor did it cause a fall of the muscarine hypertension induced in regitine-treated rabbits, but it did lower the blood pressure in animals treated with both regitine and SK&F-100273. Likewise, SK&F-100273 did not cause a fall of the muscarine hypertension induced in regitine-treated rabbits, but it did lower the blood pressure in animals treated with both regitine and enalapril. These data suggest that the nicotine-induced hypertensive state is related to at least two systems in the periphery-sympathetic and vasopressin, whereas in the muscarine-induced hypertensive state three systems in the periphery are involved, i.e., the sympathetic, vasopressin and angiotensin system. The hypotensive effect of regitine on basal arterial blood pressure levels of rabbits was not influenced by pretreatment with either of enalapril or SK&F-100273, but significantly potentiated by treating with both enalapril and SK&F-100273, suggesting participation of the sympathetic and the renin-angiotensin system as well as the vasopressin system in maintenance of arterial blood pressure.

  • PDF

Interaction of Antihistaminics with Muscarinic Receptor(II) -Action on the cerebral muscarinic $M_1$ Receptor- (항 Histamine제와 Muscarinic Receptor와의 상호작용(II) -대뇌 Muscarinic $M_1$ Receptor에 대한 작용-)

  • Lee, Shin-Woong;Park, Young-Joo;Park, In-Sook;Lee, Jeung-Soo
    • YAKHAK HOEJI
    • /
    • v.34 no.4
    • /
    • pp.224-237
    • /
    • 1990
  • A single uniform population of specific, saturable, high affinity binding site of $[^3H]QNB$ guinuclidinyl benzilate(QNB) was identified in the rat cerebral microsomes. The Kd value(37.2 pM) for $[^3H]QNB$ calculated from the kinetically derived rate constants was in agreement with the Kd value(48.9 pM) determined by analysis of saturation isotherms at various receptor concentrations. Dimenhydrinate(DMH), histamine $H_1-blocker$, increased Kd value for $[^3H]QNB$ QNB without affecting the binding site concentrations and this effect resulted from the ability of DMH to slow $[^3H]QNB-receptor$ association. Pirenzepine inhibition curve of $[^3H]QNB$ binding was shallow(nH = 0.52) indicating the presence of two receptor subtypes with high ($M_1-site$) and low($M_2-site$) affinity for pirenzepine. Analysis of these inhibition curves yielded that 68% of the total receptor populations were of the $M_1-subtype$ and the remaining 32% of the $M_2-subtype$. Ki values for the $M_1-$ and $M_2-subtypes$ were 2.42 nM and 629.3 nM, respectively. Ki values for $H_1-blockers$ that inhibited $[^3H]QNB$ binding varied with a wide range ($0.02-2.5\;{\mu}M$). The Pseudo-Hill coefficients for inhibition of $[^3H]QNB$ binding by most of $H_1-blockers$ examined except for oxomemazine inhibition of $[^3H]QNB$ binding were close to one. The inhibition curve for oxomemazine in competition with $[^3H]QNB$ was shallow(nH = 0.74) indicating the presence of two receptor populations with different affinities for this drug. The proportion of high and low affinity was 33:67. The Ki values for oxomemazine were $0.045{\pm}0.016\;{\mu}M$ for high affinity and $1.145{\pm}0.232\;{\mu}M$ for low affinity sites. These data indicate that muscarinic receptor blocking potency of $H_1-blockers$ varies widely between different drugs and that most of $H_1-blockers$ examined are nonselective antagonist for the muscarinic receptor subtypes, whereas oxomemazine might be capable of distinguishing between subclasses of muscarinic receptor.

  • PDF

Influence of Histaminergic Receptor Activation on Catecholamine Secretion in The Perfused Rat Adrenal Gland (흰쥐 관류부신에서 Histamine 수용체 활성화가 Catecholamine 분비작용에 미치는 영향)

  • Lim, Dong-Yoon;Rho, Sang-Hyun
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.43-55
    • /
    • 1993
  • The present study was conducted to examine the characteristics of histamine on catecholamine secretion in the isolated perfused rat adrenal gland and to clarify the mechanism of its secretory action. Histamine (37.5 to 150 ug) injected into an adrenal vein evoked a dose-dependent significant secretory response of catecholamines (CA) from the rat adrenal gland. However, upon the repeated injection of histamine (150 ug) at 120 min intervals, CA secretion was rapidly decreased after third injection of histamine. Tachyphylaxis to releasing effects of CA evoked by histamine was observed by the repeated administration. The histamine-induced CA secretion was markedly inhibited by the pretreatment with chlorisondamine, diphenhydramine, ranitidine, $Ca^{++}-free$ Krebs solution, nicardipine and TMB-8 while was not affected by pirenzepine. Moreover, the CA secretion evoked by ACh was considerably reduced by the prior perfusion of histamine $(6.8{\times}10^{-5} M)$ for 30 min. These experimental data suggest that histamine causes secretion of CA in a calcium dependent manner from the perfused rat adrenal gland and that its secretory effect is mediated through activation of both $H_1-$ and $H_2-histaminergic$ receptors located in adrenal medulla, which may be associated with stimulation of cholinergic nicotinic receptors.

  • PDF

Influence of Cytisine on Catecholamine Release in Isolated Perfused Rat Adrenal Glands

  • Lim, Dong-Yoon;Jang, Seok-Jeong;Kim, Kwang-Cheol
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.932-939
    • /
    • 2002
  • The aim of the present study was to determine the characteristics of cytisine on the secretion of catecholamines (CA) in isolated perfused rat adrenal glands, and to clarify its mechanism of action. The release of CA evoked by the continuous infusion of cytisine ($1.5{\times}10^{-5} M$) was time-dependently reduced from 15 min following the initiation of cytisine infusion. Furthermore, upon the repeated injection of cytisine ($5{\times}10^{-5}$), at 30 min intervals into an adrenal vein, the secretion of CA was rapidly decreased following the second injection. Tachyphylaxis to the release of CA was observed by the repeated administration of cytisine. The cytisine-induced secretion of CA was markedly inhibited by pretreatment with chlorisondamine, nicardipine, TMB-8, and the perfusion of $Ca^{2+}$-free Krebs solution, while it was not affected by pirenzepine or diphenhydramine. Moreover, the secretion of CA evoked by ACh was time-dependently inhibited by the prior perfusion of cytisine ($5{\times}10^{-6} M$). Taken together, these experimental data suggest that cytisine causes secretion of catecholamines from the perfused rat adrenal glands in a calcium-dependent fashion through the activation of neuronal nicotinic ACh receptors located in adrenomedullary chromaffin cells. It also seems that the cytisine-evoked release of catecholamine is not relevant to the activation of cholinergic M$_1$-muscarinic or histaminergic receptors.