• Title/Summary/Keyword: Pipeline system

Search Result 781, Processing Time 0.024 seconds

Experimental Study for Establishment of Long-term Monitoring System using Fiber Optical Sensor for Pipeline System for Waste Transportation (광섬유센서를 이용한 쓰레기 이송관로의 장기 계측시스템 구축을 위한 실험적 연구)

  • Kim, Haeng-Bae;Song, Jae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.35-43
    • /
    • 2016
  • Recently, the pipeline system for waste transportation has been increasingly constructed as new solution for the waste collection and disposal system by constantly increasing domestic waste which issued as social problem. The pipeline system is constructed through long distance, so proper long-term monitoring system is necessary which available to detect the damage location for the effective maintenance. In this paper, the experimental study is carried out to evaluate the applicability of optical strain gauge sensor based on FBG for the long-term monitoring system. Three test parameters such as pressure leaking, blockage and deformation are considered as typical damages for real-scale pipeline test specimen. In order to measure flexural and volumetric strain and temperature, three FBG sensors are installed at each monitoring sections. From the test results, this study suggested effective methods of sensor installation and arrangement. Also the sensor spacing for the design of monitoring system using FBG sensor is derived by the correlation of distances from deformation between sensor responses.

Effects of the Remanent Magnetization on Detecting Signals in Magnetic Flux Leakage System (자기누설탐상시스템에서 배관의 잔류자화가 결함신호에 미치는 영향)

  • Seo, Kang;Jeong, Hyun-Won;Park, Gwan-Soo;Rho, Yong-Woo;Yoo, Hui-Ryong;Cho, Sung-Ho;Kim, Dong-Kyu
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.325-331
    • /
    • 2005
  • The magnetic Hut leakage (MFL) type nondestructive testing (NDT) method is widely used to detect corrosion and defects, mechanical deformation of the underground gas pipelines. The object pipeline is magnetically saturated by the magnetic system with permanent magnet and yokes. Because of the strong magnetic field enough to saturate the pipe, there could be distortion of the sensing signals because of the magnetization of the pipeline itself, To detect the defects precisely, the sensing signals are need to be compensated to eliminate the distortions coming from the media hysteresis. In this paper, the magnetizations of the pipeline in MFL type NDT are analyzed by Preisach model and 3D FEM. The distortions of the sensing signals are analyzed.

A comparative study for the decay of chlorine residual using EPANET2.0 and an experimental pipeline system (EPANET 2.0과 관망실험을 통한 배수관망 염소농도 감쇄 비교연구)

  • Baek, Dawon;Kim, Hyunjun;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.411-419
    • /
    • 2018
  • The residual chlorine concentration is an essential factor to secure reliable water quality in the water distribution systems. The chlorine concentration decays along the pipeline system and the main processes of the reaction can be divided into the bulk decay and the wall decay mechanisms. Using EPANET 2.0, it is possible to predict the chlorine decay through bulk decay and wall decay based on the pipeline geometry and the hydraulic analysis of the water distribution system. In this study, we tried to verify the predictability of EPANET 2.0 using data collected from experimental practices. We performed chlorine concentration measurement according to various Reynolds numbers in a pilot-scale water distribution system. The chlorine concentration was predicted using both bulk decay model and wall decay model. As a result of the comparison between experimental data and simulated data, the performance of the limited $1^{st}$-order model was found to the best in the bulk decay model. The wall decay model simulated the initial decay well, but the overall chlorine decay cannot be properly predicted. Simulation also indicated that as the Reynolds number increased, the impact of the wall.

Development of the Odometer System for the Intelligent Pig (인텔리전트 피그를 위한 주행거리계의 개발)

  • Park, S.S.;Kim, D.K.;Yoo, H.R.;Cho, S.H.;Park, D.J.;Koo, S.J.;Rho, Y.W.;Lee, J.G.;Hong, H.S.;Seo, J.W.;Park, C.G.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.222-227
    • /
    • 2001
  • This paper introduces the spring-mounted odometer system which maintains the correct contact with the pipe wall and measures the distance along the pipe. The odometer wheel is designed to keep contact to the pipelines inner wall and to generate fifty rectangular pulses per one turn(l59.5681mm) during pigging. The pipeline has the defects in various types such as buckles, winkles, cracks, dents, welding point and so on. Specially, girth welding points which exist each 12m of the pipeline, much affects the operational environment of the odometer. The measurement error of the distance along the pipe is accumulated, for the measurement error of wheel's circumference and the pipeline inner environment. So, this paper proposes the method for the error compensation based on the analysis of the odometer's behavior around the girth welding point of pipe. The experimental results show that developed odometer system can be used for the intelligent pig with good performances.

  • PDF

Health monitoring of pressurized pipelines by finite element method using meta-heuristic algorithms along with error sensitivity assessment

  • Amirmohammad Jahan;Mahdi Mollazadeh;Abolfazl Akbarpour;Mohsen Khatibinia
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.211-219
    • /
    • 2023
  • The structural health of a pipeline is usually assessed by visual inspection. In addition to the fact that this method is expensive and time consuming, inspection of the whole structure is not possible due to limited access to some points. Therefore, adopting a damage detection method without the mentioned limitations is important in order to increase the safety of the structure. In recent years, vibration-based methods have been used to detect damage. These methods detect structural defects based on the fact that the dynamic responses of the structure will change due to damage existence. Therefore, the location and extent of damage, before and after the damage, are determined. In this study, fuzzy genetic algorithm has been used to monitor the structural health of the pipeline to create a fuzzy automated system and all kinds of possible failure scenarios that can occur for the structure. For this purpose, the results of an experimental model have been used. Its numerical model is generated in ABAQUS software and the results of the analysis are used in the fuzzy genetic algorithm. Results show that the system is more accurate in detecting high-intensity damages, and the use of higher frequency modes helps to increase accuracy. Moreover, the system considers the damage in symmetric regions with the same degree of membership. To deal with the uncertainties, some error values are added, which are observed to be negligible up to 10% of the error.

Data Reduction Pipeline for the MIRIS Space Observation Camera

  • Pyo, Jeonghyun;Kim, Il-Joong;Park, Won-Kee;Jeong, Woong-Seob;Lee, Dae-Hee;Moon, Bongkon;Park, Youngsik;Park, Sung-Joon;Park, Kwijong;Lee, Duk-Hang;Nam, Uk-won;Han, Wonyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.74-74
    • /
    • 2013
  • Multi-purpose Infra-Red Imaging System (MIRIS) is the main payload of the Science and Technology Satellite-3 (STSAT-3) to be launched in the late half of this year. For the Space Observation Camera (SOC) of MIRIS, we developed the data reduction pipeline with Python powered by Astropy, a community Python library for astronomy. The pipeline features the following functionalities: i) to retrieve the raw observation data from database and convert it to a FITS format, ii) to mask bad pixels, iii) to correct the non-linearity, iv) to differentiate the frames, v) to correct the flat-field, vi) to correct focal-plane distortion, vii) to improve the world coordinate system (WCS) information using known point-source catalog, and viii) to combine the sequentially taken frames. The pipeline is well modularized and has flexibility for later update. In this poster, we introduce the details of the pipeline's features and the future maintenance plan.

  • PDF

Development of Discretized Combined Unsteady Friction Model for Pipeline Systems (관수로 합성 부정류 차분화 마찰모형의 개발)

  • Choi, Rak-Won;Kim, Sang-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.455-464
    • /
    • 2012
  • In this study, a combined unsteady friction model has been developed to simulate the waterhammer phenomenon for the pipeline system. The method of characteristics has been employed as the modeling platform for the integration of the acceleration based model and the frequency dependant model for unsteady friction. Both Zielke's model and Ramos model were also compared with pressure measurements of a pilot plant pipeline system. In order to validate the modeling approach, a pipeline system equipped with the high frequency pressure data acquisition system was fabricated. The time series of pressure, introduced by a sudden valve closure, were obtained for two Reynolds numbers. A trial and error method was used to calibrate parameters for unsteady friction model. The comparison between different unsteady friction contributions in pressure variation provided the comprehensive understanding in the pressure damping mechanism of waterhammer. The proper evaluation of unsteady friction impact is a critical factor for accurate simulation of hydraulic transient.

A review on vibration-based structural pipeline health monitoring method for seismic response (지진 재해 대응을 위한 진동 기반 구조적 관로 상태 감시 시스템에 대한 고찰)

  • Shin, Dong-Hyup;Lee, Jeung-Hoon;Jang, Yongsun;Jung, Donghwi;Park, Hee-Deung;Ahn, Chang-Hoon;Byun, Yuck-Kun;Kim, Young-Jun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.5
    • /
    • pp.335-349
    • /
    • 2021
  • As the frequency of seismic disasters in Korea has increased rapidly since 2016, interest in systematic maintenance and crisis response technologies for structures has been increasing. A data-based leading management system of Lifeline facilities is important for rapid disaster response. In particular, the water supply network, one of the major Lifeline facilities, must be operated by a systematic maintenance and emergency response system for stable water supply. As one of the methods for this, the importance of the structural health monitoring(SHM) technology has emerged as the recent continuous development of sensor and signal processing technology. Among the various types of SHM, because all machines generate vibration, research and application on the efficiency of a vibration-based SHM are expanding. This paper reviews a vibration-based pipeline SHM system for seismic disaster response of water supply pipelines including types of vibration sensors, the current status of vibration signal processing technology and domestic major research on structural pipeline health monitoring, additionally with application plan for existing pipeline operation system.

Parallel implementation of a neural network-based realtime ATR system using a multicomputer (다중컴퓨터를 이용한 신경회로망 기반 실시간 자동 표적인식시스템의 병렬구현)

  • 전준형;김성완;김진호;최흥문
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.2
    • /
    • pp.197-208
    • /
    • 1996
  • A neural network-based PSRI(position, scale, and rotation invariant) feature extraction and ATR (automatic target recognition) system are proposed and an efficient parallel implementatio of the proposed system using multicomputer is also presented. In the proposed system, the scale and rotationinvariant features are extracted from the contour projection of the number of edge pixels on each of the concentric circles, which is input t the cooperative network. We proposed how to decide the optimum depth and the width of the parallel pipeline system for real time applications by modeling the proposed system into a parallel pipeline implementation method using transputers is also proposed. The implementation results show that we can extract PSRI features less sensitive to input variations, and the speedup of the proposed ATR system is about 7.55 for the various rotated and scaled targets using 8-node transputer system.

  • PDF