• Title/Summary/Keyword: Pipeline system

Search Result 786, Processing Time 0.022 seconds

Performance Evaluation of Asynchronous Concurrent System Using Timed Petri Nets (타임 페트리 네트를 이용한 비동기식 병행 시스템의 성능 평가)

  • 이부영;송영재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.5
    • /
    • pp.511-520
    • /
    • 1989
  • Generally, Intelliget link is made of drawing picture that is amalgated in two conception of communication and processing. This is a new system of information transmission having fuction being able to handle een though the former information transmission can not be possible. That Intelligent link is to say that function of each segment by working software can be anailable at general purposed pipeline processing system, general purpose pipeline have a different working time in function of segmant, work asynchronizing pipeline. in the papers, graphic design is easy to understand the sense of sight model by Petri Net that is simple regulation. it can translate into working of asynchronzing pipeline by working of calculator of simulation.

  • PDF

Implementation of Pipeline Monitoring System Using Bio-memetic Robots (생체 모방 로봇을 이용한 관로 모니터링 시스템의 구현)

  • Shin, Dae-Jung;Na, Seung-You;Kim, Jin-Young;Jung, Joo-Hyun
    • The KIPS Transactions:PartA
    • /
    • v.17A no.1
    • /
    • pp.33-44
    • /
    • 2010
  • We present a pipeline monitoring system based on bio-memetic robot in this paper. A bio-memetic robot exploring pipelines measures temperature, humidity, and vibration. The principal function of pipeline monitoring robot for the exploring pipelines is to recognize the shape of pipelines. We use infrared distance sensor to recognize the shape of pipelines and potentiometer to measure the angle of motor mounting infrared distance sensor. For the shape recognition of pipelines, the number of detected pipelines is used during only one scanning of distance. Three fuzzy classifiers are used for the number of detected pipelines, and the classifying results are presented in this paper.

Impulse response method for a centrifugal pump in pipeline systems (원심펌프 관로계에 대한 임펄스 응답법 적용 연구)

  • Hur, Jisung;Kim, Hyunjoon;Song, Yongsuk;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.5
    • /
    • pp.481-489
    • /
    • 2016
  • Method of characteristic(MOC) has been widely used as a transient analysis technique for pressurized pipeline systems. There are substantial studies using MOC for the water hammer triggered through instantaneous valve closures, pump stoppage and pump startup for pipelines systems equipped with a centrifugal pump. Considering restrictions of MOC associated with courant number condition for complicated pipeline systems, an impulse response method(IRM) was developed in the frequency domain. this study implements the impact of centrifugal pump using transfer function in frequency domain approach. Using pump performance curve and the affinity law, this study formulated transfer functions which relate complex pressure head at upstream of pump system to that of downstream location. Simulations of simple reservoir-pump-valve system using IRM with formulated transfer function were similar to those obtained through MOC.

Waterhammer in the Transmission Pipeline with an Air Chamber (에어챔버가 설치된 송수관로에서의 수격현상)

  • Kim, Gyeong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.177-183
    • /
    • 2002
  • The field tests on the waterhammer were carried out in the pump pipeline system with an air chamber. The effects of the input variables and the design parameters for the air chamber were investigated by both the numerical calculations and the experiments. Because the waterhammer problems as a result of the pump power failure were the most important, these situations were carefully studied. Among the input variables used in the waterhammer analysis, the polytropic exponent, the discharge coefficient and the wavespeed had influence on the simulated results in that order, and were calibrated in comparison with the experimental results. As the initial air volume in a vessel increased, the period of waterhammer increased and the pressure variation decreased, resulting from the reduction of the rate of pressure change in the air chamber. Using smaller orifice in the bypass pipe, the pressure rise was suppressed in some degree and the pressure surge was dissipated more rapidly as time passed. The simulations were in fairly good agreement with the measured values until 1∼2 periods of waterhammer. Not only the maximum and minimum pressures in the pipe1ine but also those occurring times were reasonably predicted. The computer program developed in this study will be useful in designing the optimum parameters of an air chamber for the real pump pipeline system.

Development of Radiometric Scanning System for the Evaluation of the Pipeline (배관 검사용 Radiometric Scanning System 제작 및 시험)

  • Kim, Yong-Kyun;Hong, Seok-Boong;Chung, Chong-Eun;Lee, Yoon-Ho;Jung, Yong-Ha;Lee, Jeong-Ki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.5
    • /
    • pp.474-482
    • /
    • 2002
  • One dimensional Radiometric scanning system was fabricated and tested as a filmless radiographic inspection system, which could be applied to the evaluation of the corrosion and deposits in the pipeline. This system is composed of the single radioactive source of the collimated focusing beam, and single scintillation detector of BGO, and the mechanical scanning system to transport and align the source and detector, and the operating software to automatically control the mechanical scan system. The performance of the system was simulated using GEANT4 software. This system is applied to one specimen having an artificial falw(flat bottom hole) in the pipe and the other specimen with thickness variation. For the inspection by using the radioactive source in the pipeline, it is possible to evaluate the corrosion and deposits in real time and without film.

A Study on the Flow Assurance in Subsea Pipeline Considering System Availability of Topside in LNG-FPSO (LNG-FPSO에서 상부구조물의 시스템 가용도를 고려한 해저 배관의 유동안정성 연구)

  • Kim, Young-Min;Choi, Jun-Ho;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.18-27
    • /
    • 2020
  • This study presents flow assurance analysis in subsea pipeline considering system availability of topside in LNG-FPSO. A hydrate management strategy was established, which consisted of PVCap experiments, system availability analysis of LNG-FPSO topside, hydrate risk analysis in the pipeline, and calculation of PVCap injection concentration. The experimental data required for the determination of PVCap injection concentration were obtained by measuring the hydrate induction time of PVCap at the subcooling temperatures of 6.1, 9.2, and 12.1℃. The availability of LNG-FPSO topside system for 20 years was 89.3%, and the longest downtime of 50 hours occurred 2.9 times per year. The subsea pipeline model for multiphase flow simulation was created using field geometry data. As a result of risk analysis of hydrate plugging using subsea pipeline model, hydrate was formed at the end of flowline in 23.2 hours under the condition of 50 hours shutdown. The injection concentration of PVCap was determined based on the PVCap experiment results. The hydrate plugging in subsea pipeline of LNG-FPSO can be completely prevented by injecting PVCap 0.25 wt% 2.9 times per year.

Analysis of Properties Influencing CO2 Transport Using a Pipeline and Visualization of the Pipeline Connection Network Design: Korean Case Study

  • Lee, Ji-Yong
    • International Journal of Contents
    • /
    • v.13 no.1
    • /
    • pp.45-52
    • /
    • 2017
  • Carbon Capture and Storage (CCS) technologies involve three major stages, i.e., capture, transport, and storage. The transportation stage of CCS technologies has received relatively little attention because the requirements for $CO_2$ transport differ based on the industry-related conditions, geological, and demographical characteristics of each country. In this study, we analyzed the properties of $CO_2$ transport using a pipeline. This study has important implications for ensuring the stability of a long-term CCS as well as the large cost savings, as compared to the small cost ratio as a percentage of the entire CCS system. The state of $CO_2$, network topologies, and node distribution are among the major factors that influence $CO_2$ transport via pipelines. For the analysis of the properties of $CO_2$ transport using a pipeline, the $CO_2$ pipeline connections were visualized by the simulator developed by Lee [11] based on the network topologies in $CO_2$ transport. The case of Korean CCS technologies was applied to the simulation.

A Study on the Data Classification in Engineering Stage of Pipeline Project in Extreme Cold Weather (극한지 파이프라인 프로젝트 설계단계에서의 데이터 분류에 관한 연구)

  • Kim, Chang-Han;Won, Seo-Kyung;Lee, Jun-Bok;Han, Choong-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.214-215
    • /
    • 2014
  • Recently, Russia decided to export an annual 7.5 million tons of natural gas to Korea over 30 years from 2015, as also deal with China, planed to build a pipeline connecting Siberia to Shandong Peninsula about 4000km. Risk management is required depending on the project in extreme cold weather, because it is concerned about the behavior of the seasonal changes in soil temperature and the strain of pipe according to the long-distance pipeline construction. The plan of data management shall be prepared in parallel for a sophisticated risk management, because a data is massive scale and it is generated/accumulated in real time. Therefore, this research is aimed to classify a data items in engineering stage of pipeline by previous studies for managing a generated data depending on the detail works in extreme cold weather. We expect to be provided the foundation of an efficient classification system of a generated data from the pipeline project life cycle.

  • PDF

Study on Sebsea Pipeline Thermal Expansion (해저송유관의 열팽창 고찰)

  • 조철희;홍성근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 1999
  • Nearshore and offshore pipelines are often applied to carry oil, gas, water and combined products. The thermal and pressure gradients of the fluid inside pipeline cause pipeline expansion. This expansion produces stress to connecting structures with pipeline. Should this stress exceeds the yield strength of connecting components or the allowable displacement of the system, a damage can occur. As most pipelines contain hazardous and toxic fluids, the damage usually leads to fatal accidents involving great economic loss as well. Even subsea pipelines can be easily applied to transport liquid type fluid without time and space constraint, they should be designed and maintained carefully to be functional safely during design lifetime. In this paper, various theories estimating pipeline thermal expansion are investigated and the effects of pipe components to expansion are studied.

  • PDF

Expert System for Emergency Decision Making for Metro Water Supply Systems (광역상수도 시설의 비상시 의사결정을 위한 전문가시스템)

  • Kim, Eung Seok;Kim, Joong Hoon;Baek, Chun Woo;Lee, Jung Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.103-110
    • /
    • 2007
  • An efficient operational strategy using expert system for metro water supply systems in case of emergency situations is developed in this study. The emergency situations of the water supply systems are classified into three categories : pipeline system accident, machinery and electric facility accident and water quality accident. A PC-based expert system is developed using CLIPS for Seoul metro water supply system, Phase 1 & 2 system and Phase 3 & 4 system. Broad professional knowledges and experiences from the experts in the water supply systems have been collected systematically to construct the knowledge base. Decision-making in case of an emergency is based upon the professional knowledge so that a rational and efficient operational management can be available even in the absence of experienced expert. Especially the expert model developed in this study also provides a guide for pumping operation in case of pipeline accident to confirm that the proper pressure to all nodes in the system is supplied. The pipe network simulator KYPIPE has been consecutively executed by trial and error fashion for each pipeline in the system. The results from KYPIPE were included in the knowledge base to supplement the knowledge of the field engineers.