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ABSTRACT 
 

Carbon Capture and Storage (CCS) technologies involve three major stages, i.e., capture, transport, and storage. The transportation 
stage of CCS technologies has received relatively little attention because the requirements for CO2 transport differ based on the 
industry-related conditions, geological, and demographical characteristics of each country. In this study, we analyzed the properties 
of CO2 transport using a pipeline. This study has important implications for ensuring the stability of a long-term CCS as well as the 
large cost savings, as compared to the small cost ratio as a percentage of the entire CCS system. The state of CO2, network 
topologies, and node distribution are among the major factors that influence CO2 transport via pipelines. For the analysis of the 
properties of CO2 transport using a pipeline, the CO2 pipeline connections were visualized by the simulator developed by Lee [11] 
based on the network topologies in CO2 transport. The case of Korean CCS technologies was applied to the simulation.  
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1. INTRODUCTION 
 

 Climate change is a complex phenomenon and its impacts 
are hard to predict far in advance. Global warming is the one of 
the serious problem of climate change and primarily a problem 
of too much carbon dioxide in the atmosphere – which acts as a 
blanket, trapping heat and warming the planet. Fig. 1 presents 
the International Energy Agency’s (IEA’s) prediction regarding 
the amount of CO2 emissions.  

 

Fig. 1. CO2 Emissions and Reductions [8] 
 

 
There are several alternative ways to reduce CO2, 

including energy efficiency, renewable energy, biofuels, 
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nuclear power, and CO2 capture and storage/sequestration 
(CCS). By 2030, using all of the available alternative methods, 
it is estimated that CO2 emissions will be reduced from 40 to 
26 gigaton (GT) [8]. Among the aforementioned methods, 19% 
of the CO2 emission reduction will be achieved by CCS. CCS 
is used to describe a set of technologies aimed at capturing 
carbon dioxide emitted from large emission plant such as 
petroleum plants, cement plant and the other industrial plants 
which are related with energy sources before it enters the 
atmosphere. And then CCS has a role of compressing carbon 
dioxide and injecting it deep underground such as seabed in 
geologically secure lands and ensuring it remains stored there 
indefinitely. CCS is expected to reduce CO2 emission rate by at 
least 15% and at most 55% by 2100 [8].  

The key driving force behind taking CCS is the need to be 
cost-effective to tackle the global issue of climate change by 
reducing CO2 emissions where there are continuing and rising 
demands for energy.  

CCS system is divided into three steps – capture, transport 
and storage. The stage of capturing CO2 is a core technology 
which accounts for almost about 70% of the CCS system cost. 
The main technologies for capturing CO2 are as pre-
combustion capture technology, post-combustion capture 
technology and oxy-fuel combustion technology. The stage of 
storage as a technique for storing CO2 in deep seabed or land, 
has been actively researched to find the problems inherent 
about its compatibility and stability.  

In contrast, a transportation stage has received relatively 
little attention in the whole CCS technologies because the 
requirements for CO2 transport differ to the conditions 
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regarding industries, geological and demographical 
characteristics each country. Furthermore, most studies for CO2 
pipeline transportation problem focus on constructing pipelines 
regarding technological analysis for stability/durability of 
transporting CO2. There are few studies analyzing parameters’ 
relationships in the transportation stage. The analysis of CO2 
transportation network is important of that it results in a large 
cost savings and ensures the stability of a long-term CCS 
contrary to the small ratio of the cost as a percentage of the 
entire CCS.  

There exist lots of parameters which affect to the pipelines 
such as the diameter of the pipeline, CO2 flow rate, and the 
pipeline length and so on [2], [3], [5]-[7], [9], [10], [12], [13], 
but it needs to know how they influence to the connection of 
pipelines among the CO2 emission sites.   

In this study, it is assumed that CO2 is transported only via 
pipelines. If CO2 emission sources are not processed by CCS 
systems, they all release CO2 into the air and generate a penalty 
cost proportional to the amount of CO2. We give a cost analysis 
for properties of the pipelines how they affect the entire CCS 
systems. 

We propose a pipeline network model that considers the 
pipeline cost model that was analyzed in previous studies and 
the location of the pipeline. It uses regional information from 
where the pipeline is installed, the state and density of the CO2 
flowing through the pipeline, and the terrain. These aspects of 
the CCS system model are more realistic and efficient than 
those of existing studies. 
 
 

2. RESEARCH BACKGROUD 
 

Recent studies have analyzed the various technical factors 
that gradually affect pipelines. Z.X. Zhang [18] studied initial 
CO2 pipeline transport, focusing on which CO2 states were 
more cost effective transportation modes based on comparisons 
of the liquefied and supercritical phases of CO2.  

As the pressure drop of liquid CO2 is less than that of 
supercritical CO2, he concluded that the transport of CO2 in its 
liquefied state was more cost-effective.  

In contrast, Nimtz [15] concluded that supercritical CO2 
allowed for high-pressure transport without changing phases, 
making it suitable for pipeline transport. Dongjie Zhang [4] 
completed an economic evaluation of the pipeline from a 
hydrodynamic perspective and McCoy [14] presented a 
methodology that was more suitable for pipeline design than 
the existing research, with an emphasis on engineering. 
However, none of these studies included an integrated 
investigation with the organic relation to CO2 capturing and 
transportation technology. 

Many studies have included cost estimations based on the 
case of natural gas pipelines in the cost analysis of CO2 
pipelines. However, such analyses considering the properties of 
natural gas pipelines do not produce realistic results. CO2 
pipeline design differs significantly from natural gas pipeline 
design, specifically in the compression step, which changes the 
properties of CO2 and thus affects the internal design 
requirements. Knoope [16] analyzed a cost model with changes 

in toughness that focused on a CO2 pipeline’s wall thickness 
and steel grade. And Knoope also analyzed uncertainty and cost 
depending on the location of the pumping station. Lee [11] 
proposed an algorithm to determine the location and the 
number of the intermediate storage hub and develop a simulator 
for the connection network of the carbon dioxide emission site. 
The simulator also provides the course of transportation of the 
carbon dioxide.  
 
 

3. PROBLEM DESCRIPTION 
 
3.1 Properties of the pipeline transport 

In this section, the state of CO2 and the cost factors of 
pipeline estimation models are defined to investigate the 
relationship among properties. Before estimating the pipeline 
cost, it is important to address the phase change in the CO2 to 
be transported to the intermediate storage through the CO2 
emission site. The state of transporting CO2 via pipelines is the 
most crucial properties. For example, the state of the collected 
CO2 is 1 bar and 25℃ at room temperature. The phase of the 
CO2 being transported via pipelines is affected by numerous 
pipeline factors such as the number of compressors and pumps, 
the internal design of the pipeline’s diameter, the friction, the 
viscosity inside the pipeline, etc. In the following sections, we 
describe how the designs for pumps and compressors change 
with the state of the transported CO2 and analyze the effects 
which such changes have on the design of the pipelines.  
 
3.1.1 Compressor and pump designs  

The temperature and pressure of the CO2 captured from 
emission sources are 1 bar and 25℃. The pressure differs based 
on the state of the CO2 being transported through the pipeline 
(e.g., supercritical state, high density state, and low temperature 
state). The assumptions for the three representative phases of 
CO2 are as follows.  
 
Table 1. The representative states of CO2 [1] 

 Supercritical High density Low temperature 
Temperature 40˚ 10˚ -20˚ 
Pressure 140 bar (14 

MPa) 
85 bar (8.5 
MPa) 

65 bar (6.5 MPa) 

 
There are two methods for increasing the pressure up to 

the levels shown in Table 1. To increase the pressure of the gas 
CO2, compressors are required. Pumps are suitable for boosting 
the pressure in the liquid state. To adapt these compressor and 
pump costs to the pipeline connection network problem, we 
need to know how many compressors and pumps are required 
at each distance interval depending on the state of the CO2. The 
most important factor affecting the distance interval of each 
pump is the pressure drop.  

The pressure drop, adapted from Kang [1], is described in 
Table 2. The number of pump stations required per 200 km of 
pipeline is also given.   
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(a) Star network 

 
(b) Tree network 

 
(c)Backbone network 

Fig. 3. Network topologies of the pipeline connection 
 

The purpose of this study is not solely to minimize the 
overall network connection costs which are trade-off between 
the connection cost to the CCS systems and the penalty cost, 
but also to maximize the throughput (total amount of CO2) by 
the CCS systems.  
 
 

4. SIMULATION RESULTS 
 
4.1 Data set 

CO2 storage facility costs are composed of lots of cost 
factors such as capital cost (fixed cost) for storage facilities, 
unit storage cost (operating cost), CO2 collection cost, and etc. 
To calculate the cost of intermediate storage hubs, we consider 
the storage capital costs and CO2 unit storage costs shown in 
Table 5.   
 
Table 5. Capital and unit storage costs of CO2 storage facilities 
[17] 

Storage facility (steel tank) 
Storage capital cost($) 10,228,607 

Unit storage cost ($/t CO2) 0.72 
 

We use Korea as a case study example. Table 6 shows the 
number of plants by regional groups, plant types, and the 
amount of emitted CO2.  
 
Table 6. The number of capture facilities in each administrative 
district and the amount of CO2 emissions 

Region 
Capture 
Plant 
type 

Number 
of plants 

CO2 
emission 
(kton/y) 

Region 
Capture 
plant 
type 

Number 
of plants  

CO2 
emission 
(kton/y) 

Seoul A 1 620 Gyeong 
sangbukdo 

A 2 1863 

Incheon 

A 7 23481 B 4 12261 

B 2 616 Daegu A 2 2179 

C 1 7870 
Busan 

A 4 3537 

Gyeong gido A 7 5744 B 1 112 

Chung 
cheongnamdo 

A 11 119622 
Ulsan 

A 2 4257 
C 1 2986 C 1 4817 

D 3 2760 D 8 5441 
Chung 

cheongbukdo D 5 16008 
Jeollanamdo 

A 7 21506 

Gangwondo A 5 8405 C 1 6103 

D 6 27719 D 3 2601 
Gyeong 

sangnamdo A 1 29539 Jeollabukdo A 3 2576 

* Plant type  
A: Power plant facility / B: Iron and steel plant facility 
C: Oil refinery plant facility/ D: Petrochemical plant facility 

 
The areas of the CO2 emission sources are estimated using 

a variety of terrain conditions identified by the U.S. National 
Energy Technology Laboratory (NETL). We classify the 
conditions such as mountainous, flat, river, and high population 
in which those are obtained by the nine categories established 
by NETL.  
 
Table 7. Terrain factors  

Feature Value  Feature Value 
Waterways 10  Wetlands 15 
Highway 3  Urban 15 
Railroad 3  Slope 0.1-0.8 

State Parks 15  Base 1 
National Parks 30    

 
The terrain factors affect pipeline design and cost 

multipliers. In this case study, Korea is divided into 13 cities 
and provinces according to the administrative district to define 
the industry groups and the amounts of CO2 they emit. Fig. 5 
shows the visualization of the district and the land use in Korea 
case. Each district is included in one of the conditions in Table 
7.  

Researchers determine the locations and the number of the 
candidate hub nodes beforehand considering the circumstance 
and geological factors or other policies; the number of 
candidate hub nodes is assumed to be 25% (22 nodes) of the 
total number of CO2 emission source nodes (88 nodes). The 
distribution of each node is shown in Fig. 5(c). Green circles 
are CO2 emission source nodes and yellow circles are candidate 
hub nodes.  
 

(a) Cities and provinces of Korea (b) Land use in Korea 

 
(c) Distribution of CO2 emission sources 

Fig. 5. Classification of the territory using the simulator 
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the United States and China, this approach will have important 
implications.  

Fig. 12 illustrates a linkage maps of all the nodes, 
connected via a cost analysis hub determined by the parameters 
with the assumptions. Most of the cost factors using in the 
paper which consist total cost of CO2 pipeline transportation 
are assumed to estimate and compare the effect of properties. 
For the sake of uncertainty, the visualizations of three network 
connections using Lee’s simulator [11] are proposed as in Fig. 
12(a)-(c) instead of optimizing the cost model.  

 

(a) Star network (b) Tree network 

 
(c) Backbone network 

Fig. 12: Linkage map of pipeline connection network 
 
 

5. CONCLUSION 
 

CCS is a technology for capturing, transporting, and 
storing/sequestrating emitted CO2 from fuel combustion at 
some isolated site. A significant amount of research has focused 
on the infrastructural technologies involved in each step of this 
process. Although some empirical studies have integrated these 
steps, the literature remains insufficient.  

Previous studies have focused on pipeline design 
parameters, which can influence the cost of designing CO2 
pipeline cost estimation models based on the various problems’ 
definitions and assumptions. In this study, we focused on not 
only pipeline cost models, but also the connectivity of the 
pipeline networks from CO2 emission source sites to the 
sequestration plants. Thus, when applying the conditions 

assumed for this study, we considered how these assumptions 
affected the CO2 pipeline cost estimation models. These 
conditions are the state of the CO2 being transported, the 
distribution of the CO2 emission sources, and the network 
connectivity. 

The purpose of this study was to provide a network 
configuration to minimize the cost of pipeline network design 
while increasing the overall use of the CCS system. A heuristic 
algorithm for placing the intermediate storage hub was 
proposed. This was not only cost efficient for transporting CO2 
to the sequestration plant located on the coast, but was also a 
realistic algorithm, especially for the inland provinces. Thus, 
we proposed an algorithm to determine the number and 
positions of hubs. We developed a simulator for the decision-
making process involved in determining the locations and 
number of hubs. It also handled how the parameters worked 
within the program and provided an informatics analysis. 
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