• Title/Summary/Keyword: Pipeline network

Search Result 197, Processing Time 0.029 seconds

KMTNet nearby galaxy survey

  • Kim, Minjin;Ho, Luis C.;Sheen, Yun-Kyeong;Park, Byeong-Gon;Lee, Joon Hyeop;KIM, Sang Chul;Jeong, Hyunjin;Seon, Kwangil
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.75.3-75.3
    • /
    • 2016
  • We present a new survey of nearby galaxies to obtain deep wide-field images of 200 nearby bright galaxies in the southern hemisphere using Korea Microlensing Telescope Network (KMTNet). We are taking very deep and wide-field images, spending 4.5 hours for the B and R filters for each object. Using this dataset, we will look for diffuse, low-surface brightness structures including outer disks, truncated disks, tidal features and stellar streams, and faint companions. The multicolor data will enable us to estimate the incidence and star formation history of those features. We present an outline of the data reduction pipeline, and preliminary results from the commissioning data.

  • PDF

Application of Management Reliability Index for Water Distribution System Assessment

  • Choi, Taeho;Lee, Sewan;Kim, Dooil;Kim, Mincheol;Koo, Jayong
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.117-122
    • /
    • 2014
  • Indexes of safety, restoration, damage impact, and management reliability were developed to assess reliability of drinking water distribution networks (DWDNs) management. The developed indexes were applied to evaluate the reliability of the pipeline management stage during unexpected mechanical and hydraulic accidents of components. The results were used to support the decision-making process in effective management and maintenance by enhancing the administrator's system understanding and by helping to create appropriate maintenance and management policies. The results of this study indicated that application of a management reliability index to assess DWDNs reliability may help create a more effective plan for establishing DWDNs management and maintenance.

Integration of Multi-scale CAM and Attention for Weakly Supervised Defects Localization on Surface Defective Apple

  • Nguyen Bui Ngoc Han;Ju Hwan Lee;Jin Young Kim
    • Smart Media Journal
    • /
    • v.12 no.9
    • /
    • pp.45-59
    • /
    • 2023
  • Weakly supervised object localization (WSOL) is a task of localizing an object in an image using only image-level labels. Previous studies have followed the conventional class activation mapping (CAM) pipeline. However, we reveal the current CAM approach suffers from problems which cause original CAM could not capture the complete defects features. This work utilizes a convolutional neural network (CNN) pretrained on image-level labels to generate class activation maps in a multi-scale manner to highlight discriminative regions. Additionally, a vision transformer (ViT) pretrained was treated to produce multi-head attention maps as an auxiliary detector. By integrating the CNN-based CAMs and attention maps, our approach localizes defective regions without requiring bounding box or pixel-level supervision during training. We evaluate our approach on a dataset of apple images with only image-level labels of defect categories. Experiments demonstrate our proposed method aligns with several Object Detection models performance, hold a promise for improving localization.

Implementation of Face Recognition Pipeline Model using Caffe (Caffe를 이용한 얼굴 인식 파이프라인 모델 구현)

  • Park, Jin-Hwan;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.430-437
    • /
    • 2020
  • The proposed model implements a model that improves the face prediction rate and recognition rate through learning with an artificial neural network using face detection, landmark and face recognition algorithms. After landmarking in the face images of a specific person, the proposed model use the previously learned Caffe model to extract face detection and embedding vector 128D. The learning is learned by building machine learning algorithms such as support vector machine (SVM) and deep neural network (DNN). Face recognition is tested with a face image different from the learned figure using the learned model. As a result of the experiment, the result of learning with DNN rather than SVM showed better prediction rate and recognition rate. However, when the hidden layer of DNN is increased, the prediction rate increases but the recognition rate decreases. This is judged as overfitting caused by a small number of objects to be recognized. As a result of learning by adding a clear face image to the proposed model, it is confirmed that the result of high prediction rate and recognition rate can be obtained. This research will be able to obtain better recognition and prediction rates through effective deep learning establishment by utilizing more face image data.

An explosive gas recognition system using neural networks (신경회로망을 이용한 폭발성 가스 인식 시스템)

  • Ban, Sang-Woo;Cho, Jun-Ki;Lee, Min-Ho;Lee, Dae-Sik;Jung, Ho-Yong;Huh, Jeung-Soo;lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.461-468
    • /
    • 1999
  • In this paper, we have implemented a gas recognition system for classification and identification of explosive gases such as methane, propane, and butane using a sensor array and an artificial neural network. Such explosive gases which can be usually detected in the oil factory and LPG pipeline are very dangerous for a human being. We analyzed the characteristics of a multi-dimensional sensor signals obtained from the nine sensors using the principal component analysis(PCA) technique. Also, we implemented a gas pattern recognizer using a multi-layer neural network with error back propagation learning algorithm, which can classify and identify the sorts of gases and concentrations for each gas. The simulation and experimental results show that the proposed gas recognition system is effective to identify the explosive gases. And also, we used DSP board(TMS320C31) to implement the proposed gas recognition system using the neural network for real time processing.

  • PDF

Neural network for automatic skinning weight painting using SDF (SDF를 이용한 자동 스키닝 웨이트 페인팅 신경망)

  • Hyoseok Seol;Taesoo Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.4
    • /
    • pp.17-24
    • /
    • 2023
  • In computer graphics and computer vision research and its applications, various representations of 3D objects, such as point clouds, voxels, or triangular meshes, are used depending on the purpose. The need for animating characters using these representations is also growing. In a typical animation pipeline called skeletal animation, "skinning weight painting" is required to determine how joints influence a vertex on the character's skin. In this paper, we introduce a neural network for automatically performing skinning weight painting for characters represented in various formats. We utilize signed distance fields (SDF) to handle different representations and employ graph neural networks and multi-layer perceptrons to predict the skinning weights for a given point.

CNN Accelerator Architecture using 3D-stacked RRAM Array (3차원 적층 구조 저항변화 메모리 어레이를 활용한 CNN 가속기 아키텍처)

  • Won Joo Lee;Yoon Kim;Minsuk Koo
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.234-238
    • /
    • 2024
  • This paper presents a study on the integration of 3D-stacked dual-tip RRAM with a CNN accelerator architecture, leveraging its low drive current characteristics and scalability in a 3D stacked configuration. The dual-tip structure is utilized in a parallel connection format in a synaptic array to implement multi-level capabilities. It is configured within a Network-on-chip style accelerator along with various hardware blocks such as DAC, ADC, buffers, registers, and shift & add circuits, and simulations were performed for the CNN accelerator. The quantization of synaptic weights and activation functions was assumed to be 16-bit. Simulation results of CNN operations through a parallel pipeline for this accelerator architecture achieved an operational efficiency of approximately 370 GOPs/W, with accuracy degradation due to quantization kept within 3%.

Construction of the Multiple Processing Unit by De Bruijn Graph (De Bruijn 그래프에 의한 다중처리기 구성)

  • Park, Chun-Myoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2187-2192
    • /
    • 2006
  • This paper presents a method of constructing the universal multiple processing element unit(UMPEU) by De Bruijn Graph. The second method is as following. First, we propose transformation operators in order to construct the De Bruijn UMPEU using properties of graph. Second, we construct the transformation table of De Bruijn graph using above transformation operators. Finally we construct the De Bruijn graph using transformation table. The proposed UMPEU be able to construct the De Bruijn graph for any prime number and integer value of finite fields. Also the UMPEU is applied to fault-tolerant computing system, pipeline class. parallel processing network, switching function and its circuits.

Development of an On-line Intelligent Embedded System for Detection the Leakage of Pipeline (실시간 누수 감지 가능한 매립형 지능형 배관 진단 시스템)

  • Lee, Changgil;Kim, Tae-Heon;Chang, Hajoo;Park, Seunghee
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.94-94
    • /
    • 2011
  • 배관 구조물에서는 내부 미세 균열에서부터 국부 좌굴, 볼트 풀림, 피로 균열 등과 같이 다양한 형태의 손상이 복합적으로 발생 가능하다. 이러한 복합 손상은 배관 구조물의 누수, 누유 등의 사고를 야기할 수 있다. 하지만 기존의 단일 스케일 계측 시스템으로부터 복합 손상에 의한 실시간 누수를 진단하기는 매우 어렵다. 본 연구 단계에서는 누수를 야기하는 복합 손상을 효율적으로 진단하기 위하여 선행 연구에서 제안된 압전센서를 이용한 자가 계측 회로 기반의 다중 스케일 계측 시스템을 구조물의 복합 손상 진단에 적용하였다. 자가 계측 회로 기반 다중 스케일 계측 시스템은 크게 두 가지 형태의 신호를 계측한다. 첫 번째 스케일은 임피던스 계측으로부터 특정 주파수 대역폭에 대한 구조 응답을 계측하며, 두 번째 스케일은 유도 초음파 계측으로부터 단일 중심 주파수에 해당하는 구조물의 응답을 계측한다. 복합 손상을 손상 유형별로 분류하기 위하여 E/M 임피던스(Electro-mechanical impedance)및 유도 초음파(Guided wave) 계측으로부터 추출한 특성을 이용하여 2차원 손상지수를 계산하고 이를 지도학습 기반 패턴인식 기법(Supervised learning based pattern recognition) 중 확률론적 신경망 기법(Probabilistic Neural Network, PNN)에 적용한다. 제안된 기법의 적용성 검토를 위하여 파이프 구조물에 인위적으로 다중 손상을 생성시켜 시험을 수행하였다. 본 연구에서 제안된 기법이 실제 배관 구조물에 성공적으로 적용된다면 손상 부재의 거동 및 구조물 성능의 손상에 대한 영향을 효율적으로 진단하고 평가함으로써 배관 구조물의 효과적인 유지관리가 가능할 것으로 예상된다.

  • PDF

A Study on Improving HTTP latency for the Latency Web Document Processing (효율적인 웹문서 처리를 위한 HTTP 지연 개선에 관한 연구)

  • 고일석;최우진;나윤지;류승렬
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.2
    • /
    • pp.47-52
    • /
    • 2002
  • Recently, network overload is greatly increased with explosive use of internet. So the Hyper-Text Transfer Protocol(HTTP) is required improve of performance for decreasing of latency on the web document processing. The P-HTTP is one of the improved mood of He HTTP and has pipeline structure, but performance of the P-HTTP is decreased on interaction between the TCP and P-HTTP. Modification of structural design of the HTTP is not enough to improvement this problem. In this paper, we analyse performance of the HTTP and P-HTTP, and propose a new method on improving HTTP latency for the efficient web document processing.

  • PDF