• Title/Summary/Keyword: Pipe systems

Search Result 793, Processing Time 0.03 seconds

A Study on the Vibration Responses of Piping Systems by Pulsation Flow (맥동류에 의한 파이프 계의 진동응답에 관한 연구)

  • Lee, Dong-Myung;Choi, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.68-75
    • /
    • 1997
  • In this study, to investigate vibration response of piping systems due to pulsation flow, a transfer matrix method is presented. Fluid-pipe interaction is formulated using wave equation for flow velocity and pressure, which depends on position and time. From the wave equation, transfer matrix is obtained. The dynamic responses of piping systems induced by pulsation flow appeared to depend upon fluctuation fluid velocity and pressure occurrnece from pulsation, and beating phenomena were observed near the resonance. Consequently, the dynamic behaviors of piping systems appeared to the same as response characteristics of the inside flow pattern of the pipe, and are determined by the inside fluid flow.

  • PDF

Effect of C Factor Errors on the Analysis of Water Distribution Systems (C계수의 추정오차가 배수관망해석에 미치는 영향)

  • Hyun, In Hwan;Lee, Cheol Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.23-33
    • /
    • 1999
  • This study is to investigate the effect of C factor errors on the analysis of water distribution systems. For this purpose, an artificial distribution network and a real distribution network were selected as the study networks. Results are as follows. 1. The C factor of a pipe which has small velocity didn't give significant effect on the analysis of a water distribution system. 2. The effect of decreased value of C factors give more influence on the analysis of water distribution systems than that of the increased values. 3. For the C factor calibration, errors of the residual water heads as well as those of the head losses should be considered together. 4. In the analysis of water distribution systems, changes of C factors can give influences only on the nodes which locate behind the pipe. Therefore, this characteristics should be considered in the selection of nodes for the measurement of water heads.

  • PDF

Development of Monitoring and Control System of Utility-Pipe Conduit (Power Tunnel) using PLC

  • Lee, Tae-Young;Park, Byung-Seok;Ju, Seong-Ho;You, Dong-Hee;Lim, Yong-Hoon;Song, Seok-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.116-119
    • /
    • 2004
  • The existing monitoring and control systems of utility-pipe conduit (power tunnel, cable tunnel etc) have established communication lines using optical fiber, leaky coaxial cable (LCX), and several kinds of control cable. Due to the properties of the used media, the cost of equipment is considerably high and the maintenance of the system is difficult. Also, the term of carrying out is long so that the extension of the system is in difficulty. Now it is desirable to adopt Power Line Communication (hereinafter, PLC) technology in the monitoring and control systems and use the existing low-voltage power-line for lamplight as communication line. This will lead the reduction of the construction cost and the easy maintenance of the system. In this paper, we research the characteristics of PLC in conduit, design and manufacture the field test system, and analyze the performance of the system by field test. Then, we introduce the reliable monitoring and control system of utility-pipe conduit using PLC.

  • PDF

Launching Simulation of Integrated Mining System for Deep-Seabed Mineral Resources (심해저 광물자원 채광시스템의 설치 거동 해석)

  • Hong, Sup;Kim, Hyung-Woo;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.315-318
    • /
    • 2006
  • This paper concerns about coupled dynamic analysis of the deep-seabed mining system in launching operation. The dynamic behavior of mining system consisting of lifting pipe, buffer station, flexible conduit and self-propelled miner is simulated in time domain. The launching operation is divided into four critical phases: (1) deployment of miner and flexible conduit, (2) deployment of lifting pipe, flexible conduit and miner, (3) touch-down of miner, (4) final launching. The dynamic responses of sub-systems - miner, flexible conduit, buffer and lifting pipe - are analyzed in each launching phase. According to the changing periods of forced excitation at the top, the dynamic responses of sub-systems are diverse in their characteristics. It has been shown that the total integrated responses of sub-systems are strongly affected by the design parameters. Especially, the principal dimensions of flexible conduit seem to be significant in determining of the global response. Based on the simulation results, safe operation conditions are investigated.

  • PDF

A Study on the design and evaluation of connection pipes for stable water supply (용수공급 안정화를 위한 연계관로 설계 및 평가)

  • Chang, Yong-Hoon;Kim, Ju-Hwan;Jung, Kwan-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.249-256
    • /
    • 2012
  • The paper describes a design methodology that can select a proper reliability factor and apply the selected reliability factor into the real water distribution system. Reliability factors which are used for the assesment of water supply networks, can be categorized by a connectivity, a reachability, an expected shortage and an availability. Among these factors, an expected shortage is the most proper reliability factor in the aspect of economic evaluation. Therefore, the expected shortage is applied to draw a water supply reliability into Changwon water supply systems. And the economic pipe diameter can be determined as 600mm for a connection pipe in the pipe network from the estimation of the expected shortage. Also, a quantitative effect of the connection pipe can be expressed in terms of the reduction, which is estimated by the expected shortage of 30,269$m^{3}$ from 68,705$m^{3}$ at initial condition to 38,436$m^{3}$ under the connected condition with the diameter 600mm pipe.

A Case Study of Tunnel Electronic Blasting to Control Vibration in the Proximity of the Gas Pipe (매설 가스관 근접 진동제어를 위한 터널 전자발파 시공사례)

  • Choi, Hyeong-Bin;Kim, Gab-Soo
    • Explosives and Blasting
    • /
    • v.31 no.2
    • /
    • pp.25-31
    • /
    • 2013
  • In this case of "Seongnam~Yeoju double-lanes railroad construction", there were resident houses and gas pipe which were concerned about damages from vibration and noise. Especially, gas pipe which is a diameter of ${\varphi}500mm$ was located under the ground along upside road. The limit of vibration was 1.0cm/sec to protect gas pipe. The electronic blasting systems have been used to control vibration & noise not only gas pipe but also resident houses. The results of tunnelling were successfully conducted with effective vibration control and quick excavation by electronic blasting without any damages to adjacent facilities.

A Study on the Flow Characteristics in Double Coaxial Pipe Jets (동축이중원관 분류에 있어서의 유동 특성에 관한 연구)

  • Shin, C.H.;Kim, K.H.
    • Journal of ILASS-Korea
    • /
    • v.1 no.4
    • /
    • pp.46-53
    • /
    • 1996
  • The present study is aiming at improving the performance of main nozzle of an air jet loom with a modified reed and auxiliary nozzles. The double coaxial pipe jets consisting of a central air jet and an annular air jet have been experimentally investigated. The duter jet has a potential core and a constant velocity. The inner jet through an inner long pipe is induced by the subatmospheric pressure near the inner nozzle edge, and the jet velocity of an inner pipe is always lower than that of a outer pipe. The static pressures of the main nozzle over a wide range of the nozzle tank pressure were measured, and the nozzle velocity and Mach numbers were analytically calculated. Experiment81 results indicate that the critical condition of Mach number of unity to occur at the two positions in a main nozzle; one of them is the needle tip and the other is the acceleration tube exit An increase in the tank pressure causes the critical throat condition to occur at the two positions above. The velocity of acceleration-tube exit is maximum at the critical length L* and flow patter in acceleration-tube over critical lengh remains unstable.

  • PDF

Structural Integrity of a Fuel Assembly for the Secondary Side Pipe Breaks (2차측 배관파단에 대한 핵연료 집합체의 구조 건전성)

  • Jhung, M. J.
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.827-834
    • /
    • 1996
  • The effect of pipe breaks in the secondary side is investigated as a part of the fuel assembly qualification program. Using the detailed dynamic analysis of a reactor core, peak responses for the motions induced from pipe breaks are obtained for a detailed core model. The secondary side pipe breaks such as main steam line and economizer feedwater line braksare considered because leak-before-break methodology has provided a technical basis for the elimination of double ended guillotine breaks of all high energy piping systems with a diameter of 10 inches or over in the primary side from the design basis. The dynamic responses such as fuel assembly shear force, bending moment, axial force and displacement, and spacer grid impact loads are carefully investigated. Also, the stress analysis is performed and the effect of the secondary side pipe breaks on the fuel assembly structural integrity under the faulted condition is addressed.

  • PDF

determination of Optimum Pipe diameter Using Multi-Stage Iterative Method in Water Distribution system (다단계 반복기법을 이용한 관로시스템의 최적관경 결정)

  • Han, Geon-Yeon;Park, Jae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.327-335
    • /
    • 1998
  • The distribution network is an essential part of all water supply systems. The cost of this portion of any sizable water supply system may amount to most of the entire cost of the project. This study tried to reduce the cost of the distribution system through optimization in system design. To determine pipe diameter considered in water distribution system design, a iterative procedure linked the flow analysis model and optimization model was used. Linear theory was introduced to analyze flowrate and revised-simplex method based on linear programming is used to optimize pipe diameter. This model was applied to wter distribution system with 22 and 35 pipes, and rapidly determine optimized commercial pipe diameters. Keywords : water distribution system, revised simplex method, optimum pipe diameters.

  • PDF

Development of the Computational Model to Evaluate Integrated Reliability in Water Distribution Network (상수관망의 통합신뢰도 산정을 위한 해석모형의 개발)

  • Park, Jae-Hong;Han, Kun-Yeon
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.1
    • /
    • pp.105-115
    • /
    • 2003
  • The computation model which evaluates combined hydraulic and mechanical reliability, is developed to analyze the integrated reliability in water distribution system. The hydraulic reliability is calculated by considering uncertain variables like water demand, hydraulic pressure, pipe roughness as random variables according to proper distribution type. The mechanical reliability is evaluated by analyzing the effect of pipe network with sequential failure of network components. The result of this study model applied to the real pipe network shows that this model can be used to simulate the uncertain factors effectively in real pipe network. Therefore, The pipe-line engineers can design and manage the network system with more quantitative reliability, through applying this model to reliable pipe network design and diagnosis of existing systems.