• Title/Summary/Keyword: Pipe steel

Search Result 1,038, Processing Time 0.034 seconds

Case Study of Braced Wall System with High-strength Steel Pipe Strut (고강도 강관파이프 스트러트 흙막이공법 사례연구)

  • Shin, Jae-Min;Park, Hyun-Young;Joo, Jin-Kyu;Shin, Yoonseok;Kim, Gwang-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.19-20
    • /
    • 2012
  • According to develop urban area, the depth and floor area of basement tend to become deeper and larger. Excavation work for basement floor work is very important because its cost take 20% of total construction cost. Therefore, many studies of developing retaining wall system have performed for feasibility and safety in deep excavation work. In this study, new supporting system used high-strength pipe for retaining wall is introduced to reduce the construction cost and improve the safety and constructability by analyzing case study.

  • PDF

Verification of LRFD Resistance Factors of Driven Steel Pipe Piles Using a Real Bridge Foundation Design (실제 설계 사례를 통한 항타강관말뚝의 LRFD 저항계수 검증)

  • Park, Jae-Hyun;Lee, Ju-Hyung;Chung, Moon-Kyung;Choi, Young-Seok;Kwak, Ki-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.512-517
    • /
    • 2009
  • Resistance factors for static bearing capacity of driven steel pipe piles were calibrated in the framework of reliability theory. A comprehensive foundation design case study on an actual bridge was performed using resistance factors developed in this study. Comparing with Allowable Stress Design (ASD), LRFD design method provides quantitative evaluation of safety level of designed foundation and exhibits considerable potential economy in design.

  • PDF

Analytical Study of HAT Joint between PHC Pile and Steel Pipe Column (강재기둥과 PHC 파일을 연결하는 반구형 접합부(HAT Joint)의 유한요소 해석 PART I : 원형강관기둥)

  • Oh, Jin-Tak;Lee, Yeun-Seung;Kim, Sang-Bong;Ju, Young-Kyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.103-110
    • /
    • 2015
  • To overcome disadvantages of usual spread foundation in large space structure, some prototypes of a joint of the PHC pile to steel pipe column that directly connects a column to a PHC pile are analytically studied. With the consideration of strength requirement and stress concentration of joint of the PHC pile to column, we suggest the most appropriate one.

FORM Reliability-based Resistance Factors for Driven Steel Pipe Piles (FORM 신뢰성 기반 항타강관말뚝 저항계수 산정)

  • Park, Jae-Hyun;Huh, Jung-Won;Lee, Ju-Hyung;Chung, Moon-Kyung;Kwak, Ki-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.779-783
    • /
    • 2008
  • LRFD Resistance factors for static bearing capacity of driven steel pipe piles were calibrated in the freamework of reliability theory. Reliability analysis was performed by the First Order Reliability Method (FORM) using resistance bias factor statistics.The target reliability indices are selected as 2.0 and 2.33 for group pile case and 2.5 for single pile case, based on the reliability level of the current design practice and considering redundancy of pile group, acceptable risk level, construction quality control, and significance of individual structure.

  • PDF

A New Way of Connecting Method Between Steel Pipe Pile and Concrete Footing (새로운 강관말뚝 머리 보강 공법 개발)

  • 박영호;김낙영;박종면;유성근;김영호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.413-420
    • /
    • 2002
  • Recent experimental research results of connection method between steel pipe pile and concrete footing are provided based on various experimental observations. It gives a shedding light toward developing better and concrete connection method for steel pipe pile at the field application. In this study, the newly developed method is tested for compressive, pull put and combination load including moment with carefully designed monitoring system. The measured data show that new method have at least equivalent or better load resistant capacities compared with those of specified method in Korea Highway Corporation design code. It is also tried to define and investigate the load transfer mechanism for new method.

  • PDF

Developing Trend of High Strength and Good Toughness Linepipe Steel (고강도-고인성 라인파이프강 개발 동향)

  • Yoo, Jang-Yong;Kang, Ki-Bong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.216-221
    • /
    • 2004
  • Linepipe steels with a low carbon acicular ferrite microstructure have been recently developed to accommodate the current transportation condition of the gas and oil industry, and they are finally applied to West- East pipeline project in China. By adopting acicular microstructure, both better formability and better toughness could be obtained due to low yield ratio and fine grained microstructure. Mechanical properties of pipe are not greatly different from those of base plates or hot coils with a microstructure of acicular ferrite. Merits of introducing higher strength steels are well known, i.e., reducing the gauge of pipe and the material cost, increasing the welding speed and decreasing construction cost because of reducing the construction period. Threfore, gas and oil industry has required higher strength steel than APIX70 grade steel. Under this background, API-X80 steel has been developed and shall be applied to the several projects. In this paper, developing stage of API-X80 steel is also presented and discussed.

  • PDF

Analysis of Shear Buckling Stresses for Steel Pipes by Detailed Parametric Study (매개변수해석을 통한 원형 강관의 전단좌굴응력 상세분석)

  • Mha, Ho-Seong;Cho, Kwang Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.579-585
    • /
    • 2013
  • Shear buckling stresses of steel pipes due to the lateral forces have been analyzed via parametric analysis. Detailed FEM models are prepared, and steel types, thickness, radii and length of steel pipes are selected as parameters. STK400, STK490 and SM570 are used and the thickness of pipe is 2mm and 40mm. The radii(R) and lengths(L) are determined based on the values satisfying the following relationship as R/t=20~400 and L/R=1~3. The shear buckling stresses decrease for all types of considered steels as R/t increase from 20 to 200. High strength steels are more sensitive to R/t, and also have an bigger effect on shear buckling stresses than low strength steels. It is found that shear buckling stresses decrease as L/R increases, showing that the steel pipes become weak as the length of the steel pipe increases.

Reinforcement Effect of Steel-Concrete Composite Group Piles by Numerical Analysis (수치해석을 이용한 강관합성 무리말뚝의 보강효과 분석)

  • Chung, Moon-Kyung;Lee, Si-Hoon;Lee, Ju-Hyung;Kwak, Ki-Seok;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.29-38
    • /
    • 2010
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the hiller concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter, pile distance and loading direction. The results showed that the axial capacity of the composite pile was about 90% larger than that of the steel pipe pile while similar to that of the concrete pile. At the allowable movement criteria, the horizontal capacity of the composite pile was about 50% lager than that of the steel pile and about 22% larger than that of the concrete pile.

Stability of structural steel tubular props: An experimental, analytical, and theoretical investigation

  • Zaid A. Al-Sadoon;Samer Barakat;Farid Abed;Aroob Al Ateyat
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.143-159
    • /
    • 2023
  • Recently, the design of scaffolding systems has garnered considerable attention due to the increasing number of scaffold collapses. These incidents arise from the underestimation of imposed loads and the site-specific conditions that restrict the application of lateral restraints in scaffold assemblies. The present study is committed to augmenting the buckling resistance of vertical support members, obviating the need for supplementary lateral restraints. To achieve this objective, experimental and computational analyses were performed to assess the axial load buckling capacity of steel props, composed of two hollow steel pipes that slide into each other for a certain length. Three full-scale steel props with various geometric properties were tested to construct and validate the analytical models. The total unsupported length of the steel props is 6 m, while three pins were installed to tighten the outer and inner pipes in the distance they overlapped. Finite Element (FE) modeling is carried out for the three steel props, and the developed models were verified using the experimental results. Also, theoretical analysis is utilized to verify the FE analysis. Using the FE-verified models, a parametric study is conducted to evaluate the effect of different inserted pipe lengths on the steel props' axial load capacity and lateral displacement. Based on the results, the typical failure mode for the studied steel props is global elastic buckling. Also, the prop's elastic buckling strength is sensitive to the inserted length of the smaller pipe. A threshold of minimum inserted length is one-third of the total length, after which the buckling strength increases. The present study offers a prop with enhanced buckling resistance and introduces an equation for calculating an equivalent effective length factor (k), which can be seamlessly incorporated into Euler's buckling equation, thereby facilitating the determination of the buckling capacity of the enhanced props and providing a pragmatic engineering solution.

A Study on the Welds Characteristics of 200 Grade Stainless Steel for Application of Street Pole Material (가로등주 소재 적용을 위한 200계 스테인리스강의 용접부 특성 연구)

  • Lee, B.W.;Lee, D.K.;Kim, H.S.;Hong, S.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.33-39
    • /
    • 2009
  • The aim of this study is to analyze the welds characteristics of the 205 stainless steel pipe for application of street pole material. The welds corrosion behavior of STS 205 pipe in 0.1 N sulphuric acid solution and 5% NaCl solution at room temperature was studied using both salt spray test and potentiodynamic polarization experiment. The morphology and components of corrosion products on surface of STS 205 pipe welds were investigated using SEM/EDX. The tensile strength and yield strength values of STS 205 plate were 715 MPa and 369 MPa respectively. The microvickers hardness values of STS 205 pipe welds were slightly increased than that of STS 304 pipe welds. Corrosion current density($I_{corr.}$) and critical current density($I_{crit.}$) values of STS 205 pipe welds in 3.5% NaCl solution were $1.89{\times}10^{-6}$ $A/cm^2$ and $15.8{\times}10 ^{-6}$ $A/cm^2$. The corrosion resistance of SIS 205 pipe welds was similar to its STS 304 pipe welds. The STS 205 and 304 pipe welds passive films were chromium oxide. Especially, the STS 205 pipe welds showed good corrosion resistance in 0.1 N sulphuric acid. This is attributed to the forming of protective chromium oxide on the surface of STS 205 pipe welds.

  • PDF