• Title/Summary/Keyword: Pipe steel

Search Result 1,034, Processing Time 0.032 seconds

A Study on Behavioral Characteristics of Track Roadbed according to Steel Pipe Press-in Excavation during Construction of Underground Railway Crossing

  • Kim, Young-Ha;Eum, Ki-Young;Kim, Jae-Wang
    • International Journal of Railway
    • /
    • v.6 no.2
    • /
    • pp.69-77
    • /
    • 2013
  • In this study, numerical analysis and model experiments were conducted to analyze behavioral characteristics acting on the track roadbed with excavation through steel pipe injection, a non-exclusive method of crossing construction under railroad as primary target. In model experiments that simulate injection excavation behaviors with an increase in the depth of soil cover, the upper displacement was measured by construction of the first and the second pipes in order to predict actual behaviors, and the behavior characteristics were verified through numerical analysis. The investigation results showed that surface displacement was smaller under the condition of higher soil cover. In the case of injecting two pipes, when the first pipe was injected, deformation of the surface increased linearly in both settlement and uplift experiments. However, when the second pipe was injected, the amount of change was found to be very small due to the relaxation and plastic zones around the first pipe. In addition, the results of numerical analysis on the same cross section with the model experiment found that the results of investigation into settlement ratio and volume loss were in very good agreement with those obtained by the model experiment.

Strain and deformation angle for a steel pipe elbow using image measurement system under in-plane cyclic loading

  • Kim, Sung-Wan;Choi, Hyoung-Suk;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.190-202
    • /
    • 2018
  • Maintaining the integrity of the major equipment in nuclear power plants is critical to the safety of the structures. In particular, the soundness of the piping is a critical matter that is directly linked to the safety of nuclear power plants. Currently, the limit state of the piping design standard is plastic collapse, and the actual pipe failure is leakage due to a penetration crack. Actual pipe failure, however, cannot be applied to the analysis of seismic fragility because it is difficult to quantify. This paper proposes methods of measuring the failure strain and deformation angle, which are necessary for evaluating the quantitative failure criteria of the steel pipe elbow using an image measurement system. Furthermore, the failure strain and deformation angle, which cannot be measured using the conventional sensors, were efficiently measured using the proposed methods.

Proposal of residual stress mitigation in nuclear safety-related austenitic stainless steel TP304 pipe bended by local induction heating process via elastic-plastic finite element analysis

  • Kim, Jong-Sung;Kim, Kyoung-Soo;Oh, Young-Jin;Oh, Chang-Young
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1451-1469
    • /
    • 2019
  • This paper proposes a residual stress mitigation of a nuclear safety-related austenitic stainless steel TP304 pipe bended by local induction heating process via performing elastic-plastic finite element analysis. Residual stress distributions of the pipe bend were calculated by performing finite element analysis. Validity of the finite element analysis procedure was verified via comparing with temperature histories measured by using thermocouples, ultrasonic thickness measurement results, and residual stress measurement results by a hole-drilling method. Parametric finite element stress analysis was performed to investigate effects of the process and geometric shape variables on the residual stresses on inner surfaces of the pipe by applying the verified procedure. As a result of the parametric analysis, it was found that it is difficult to considerably reduce the inner surface residual stresses by changing the existing process and geometric shape variables. So, in order to mitigate the residual stresses, effect of an additional process such as cooling after the bending on the residual stresses was investigated. Finally, it was identified that the additional heating after the bending can significantly reduce the residual stresses while other variables have insignificant effect.

Analysis of Hydrogen-tightness on the Metal Sealing of a Fuel Pipe for FCEV according to Material Change of the Fitting Body (체결부 재료에 따른 FCEV 연료파이프 메탈 씰링부의 기밀성 분석)

  • Lee, J.M.;Han, E.S.;Chon, M.S.;Lee, H.W.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.266-274
    • /
    • 2019
  • Metal sealing is used to connecting the parts between valves and fuel pipes for a FCEV which utilizes hydrogen gas of 700 bar. Instead of general carbon steel, stainless steel is the primary material used to manufacture fuel pipes due to hydrogen embrittlement. The shape of deformation between metals is an important factor on the air-tightness of the metal to metal contact. Since the stainless steel pipe is hardened using the plastic forming during the tip shaping stage, this work hardening could have an effect on the deformed shape and characteristics of contact surfaces in fastening of pipes. In this paper, the deformation history of the pipe model was considered in order to analyze the hydrogen-tightness on the metal sealing part. The contact distance and the forward displacement for fastening were compared using experimental results and the simulation results. The simulation of the effect of material change on the fitting body demonstrated that the hardness or the strength of the formed tip of the pipe was designed to a proper valued level since the characteristics of the contact surface was exhibited better when the strength of the pipe was lower than that of the fitting body.

Design and Buckling Analysis of Earth Retaining Struts Supported by High Strength Steel Pipe and PHC Pile (고강도 강관과 PHC파일이 활용된 흙막이 버팀보의 좌굴해석 및 설계)

  • Lim, Seung Hyun;Kim, In Gyu;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.4
    • /
    • pp.411-422
    • /
    • 2015
  • The design and buckling behavior of earth retaining system supported by high strength steel pipe and PHC pile under compression is presented in this study. Buckling analysis of various strut system was investigated according to the strut total length(30m, 60m, 90m), three types of built-up columns and connection condition. Buckling loads calculated by F.E analysis was compared with the theoretical solution corresponding to diagonal buckling mode, local and global buckling mode of main strut. The design of the built-up column struts are performed based on design guide for high strength steel pipes and P-M diagram for built-up column with two PHC pile section.

Effects of alloys and flow velocity on welded pipeline wall thinning in simulated secondary environment for nuclear power plants (원전 2차계통수 모사 환경에서 용접배관 감육 특성에 미치는 재료 및 유속의 영향)

  • Kim, Kyung Mo;Choeng, Yong-Moo;Lee, Eun Hee;Lee, Jong Yeon;Oh, Se-Beom;Kim, Dong-Jin
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.245-252
    • /
    • 2016
  • The pipelines and equipments are degraded by flow-accelerated corrosion (FAC), and a large-scale test facility was constructed for simulate the FAC phenomena in secondary coolant environment of PWR type nuclear power plants. Using this facility, FAC test was performed on weld pipe (carbon steel and low alloy steel) at the conditions of high velocity flow (> 10 m/s). Wall thickness was measured by high temperature ultrasonic monitoring systems (four-channel buffer rod type and waveguide type) during test period and room temperature manual ultrasonic method before and after test period. This work deals with the complex effects of flow velocity on the wall thinning in weld pipe and the test results showed that the higher flow velocity induced different increasement of wall thinning rate for the carbon steel and low alloy steel pipe.

In-Situ Application of Steel Pipe jacking with Grout In Pipe Method (GIP 강관추진공법의 현장 적용성 연구)

  • Lim, Ho-Jeong;Jung, Min-Hyung;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1290-1297
    • /
    • 2008
  • A pipe jacking method complements the excavation method and it is a non-excavation method which is thrust in the earth. On that score, using the pipe jacking method is increased because of constructability and economical efficiency in a medium or small-sized pipeline construction. However, a pipe jacking method still has several problems that the base ground is disturbed and loosen. Especially, where some sites have boulders, gravels and foreign bodies, the foundation is brought about deformation, settlement and leakage of water. Thus, the end of the construction the ground should be reinforced by grouting and it occur with additional expenses. Therefore, a steel pipe jacking method with grouting, Grout In Pipe, is devised newly to complement the existing method. In this study, it describes a new method and verifies efficiency, an application and practicality of the method through a experimental construction.

  • PDF

Elastic Behavior Characteristics of GFRP Pipes Reinforced Ribs (리브로 보강된 GFRP 관로의 탄성 좌굴거동 특성)

  • Han, Taek Hee;Seo, Joo Hyung;Youm, Eung Jun;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.737-746
    • /
    • 2006
  • The elastic buckling strength of a Glass Fiber Reinforced Plastic (GFRP) pipe reinforced with ribs was evaluated. The height and thickness of a rib and the spacing between two adjacent ribs were considered as factors affecting the buckling strength of the pipe. And also, the ratio of the longitudinal stiffness and transverse stiffness was considered as the parameter affecting the buckling strength as the GFRP is orthotropic material. Buckling strengths of various GFRP pipe models with different shapes and stiffness ratios were evaluated by FE analyses and a formula to estimate the elastic buckling strength of a rib-reinforced pipe made of orthotropic material was suggested from the regression with the results from the FE analysis. Analytical results show that a rib-reinforced pipe has a buckling strength superior to a general flat pipe and the suggested formula estimates accurate buckling strength of the rib-reinforced pipe.

A Study on the Residual Strength of the Carbon Steel pipe using in Fuel Gas (연료가스 배관용 탄소강관의 잔존강도에 대한 연구)

  • Yim, Sang-Sik;Kim, Ji-sun;Ryu, Young-don;Lee, Jin-Han
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.112-117
    • /
    • 2016
  • The standard(KS D 3631) should be obey for using fuel gas pipe in Korea and a carbon steel pipe is coated with synthetic resine for protecting the corrosion. The coating is just performed for anti-corrosion, and actual strength of pipe is given by the carbon steel pipe when the fuel gas is transported. When the flaws are occurred in the steel pipe, the estimation method which is used for residual strength is necessary. But the suitable method is not exist for applying the fuel gas pipe. Eventually, the residual strength is estimated by overseas regulation such as ASME B31G or DNV RP F101. But the method based on the relative regulations are not sufficiently valid and it can not estimate the 85% over even. Therefore, the test was performed for validation with pipe specimen. The specimen was made with artificial flaw. The test results showed the certain differences according to flaw depth and DNV RP F101 is suitable to estimate the residual strength in Korea. The results in this paper contain in case of the severe flaw depth and suitable mode for Korea, so the result can be expected as valuable and widely used in various field.

Performance assessment of polymeric filler and composite sleeve technique for corrosion damage on large-diameter water pipes (대구경 상수도관 부식 손상부의 고분자 필러와 복합슬리브 성능 평가)

  • Ho-Min Lee;Jeong-Soo Park;Jeong-Joo Park;Cheol-Ho Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.4
    • /
    • pp.203-214
    • /
    • 2023
  • In this study, the physical properties and fracture characteristics according to the tensile load are evaluated on the materials of the polymeric filler and carbon fiber-based composite sleeve technique. The polymeric filler and the composite sleeve technique are applied to areas where the pipe body thickness is reduced due to corrosion in large-diameter water pipes. First, the tensile strength of the polymeric filler was 161.48~240.43 kgf/cm2, and the tensile strength of the polyurea polymeric filler was relatively higher than that of the epoxy. However, the tensile strength of the polymeric filler is relatively very low compared to ductile cast iron pipes(4,300 kgf/cm2<) or steel pipes(4,100 kgf/cm2). Second, the tensile strength of glass fiber, which is mainly used in composite sleeves, is 3,887.0 kgf/cm2, and that of carbon fiber is up to 5,922.5 kgf/cm2. The tensile strengths of glass and carbon fiber are higher than ductile cast iron pipe or steel pipe. Third, when reinforcing the hemispherical simulated corrosion shape of the ductile cast iron pipe and the steel pipe with a polymeric filler, there was an effect of increasing the ultimate tensile load by 1.04 to 1.06 times, but the ultimate load was 37.7 to 53.7% compared to the ductile cast iron or steel specimen without corrosion damage. It was found that the effect on the reinforcement of the corrosion damaged part was insignificant. Fourth, the composite sleeve using carbon fiber showed an ultimate load of 1.10(0.61T, 1,821.0 kgf) and 1.02(0.60T, 2,290.7 kgf) times higher than the ductile cast iron pipe(1,657.83 kgf) and steel pipe(2,236.8 kgf), respectively. When using a composite sleeve such as fiber, the corrosion damage part of large-diameter water pipes can be reinforced with same level as the original pipe, and the supply stability can be secured through accident prevention.