• 제목/요약/키워드: Pipe reinforcement structure

검색결과 23건 처리시간 0.018초

심해저 파이프라인과 굽힘 제한 장치의 다중물체 접촉 해석을 통한 구조 최적설계 (Multi-Body Contact Analysis and Structural Design Optimization of Bend Restrictors for Subsea Pipelines)

  • 노정민;하윤도
    • 대한조선학회논문집
    • /
    • 제55권4호
    • /
    • pp.289-296
    • /
    • 2018
  • The offshore subsea platforms are connected to subsea pipelines to transport gas/oil from wells. The pipe is a multilayered structure of polymer and steel for compensating both flexibility and strength. The pipe also requires reinforcement structures to endure the extreme environmental conditions. A vertebrae structure of bend restrictors is one of the reinforcement structures installed to protect the subsea pipe from excessive bending deformations. In this study, structural behaviors of the subsea pipeline with bend restrictors are investigated by the multi-body contact analysis in Abaqus 6.14-2. Contact forces of each bend restrictor extracted from the multi-body contact analysis can be boundary conditions for topology design optimization in Altair Hyperworks 13.0 Hypermesh-Optistruct. Multiple design constraints are considered to obtain a manufacturable design with efficient material usage. Through the multi-body contact analysis with optimized bend restrictors, it is confirmed that the bending performance of the optimized design is enhanced.

파이프 지지구조와 하부 보강의 설계와 강도 평가에 관한 연구 (A Study on the Design and Strength Evaluation of the Pipe Support Structure and Hull Reinforcement)

  • 김을년
    • 대한조선학회논문집
    • /
    • 제56권3호
    • /
    • pp.187-199
    • /
    • 2019
  • In the case of gas carriers and oil tankers, pipes are installed on the upper deck as a moving passage to load LPG, LNG, crude oil, etc. Pipes used for loading or unloading liquid cargo in cargo holds are connected to the hull through support structures. However, many cases of hull damage have been reported where the various equipment and support structures are installed on the upper deck. It is assumed that not only the structural discontinuity where the hull and the pipe support structure meet, but also action due to the pipe loads and the hull girder bending moment are simultaneously affected. This paper deals with the design and strength evaluation of the support structure of pipes and cables installed on the upper deck of commercial ships and offshore structures. For these supporting structures, design conditions and working loads were defined. The design procedure was established through the structure analysis on the method of determining the member dimensions. A series of finite element analysis was performed on the factors to be considered in the design and the effects were discussed. The accuracy and design periods of the strength evaluation was improved and reduced by application of the automation program in the finite element analysis. It is also expected that the design reliability of the shipyard is improved.

부동침하 건축물 복원을 위한 압입강관파일 공법 현장 적용에 관한 연구 (Study on the Application of Press in Steel Pipe Pile for Restoring Building of different settlement)

  • 신재권;이희석;소광호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.85-86
    • /
    • 2015
  • Recently, As the high rise buildings have been demanded due to the rising current of land price, the permanent drainage method have been applied during and after the construction as a way to reduce the buoyancy acting on the bottoms of the foundations in the basement. This method has brought about the consolidation subsidence of the ground and turned out to be the problems of sinking hole and foundation re-settlement. The representative methods to be used for extending the life cycle of the existing building structure which is tilted by the foundation re-settlement or differential settlement of the foundation can be divided into the building structures reinforcement and soil reinforcement. The purpose of this study is to analyze and present the application example of steel pipe pile method to extend the life cycle of the six -stories building tilted in a soft ground.

  • PDF

지반-보강재 상호작용에 의한 매설관의 부등침하 억제효과 (Soil-Reinforcement Interaction to Restrain Differential Settlement of Buried Pipeline)

  • 손준익;정하익
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1991년도 봄 학술발표회 논문집
    • /
    • pp.29-33
    • /
    • 1991
  • This paper reports the application study of the ground reinforement under a buried pipeline subjected to differential settlement via a finite element modelling. The Soil-reinforrement interaction helps to mimimize the differential settlement between the adjoining pipe segments. The settlement pattern and deformation slope of a pipeline have been evaluated for a boundary condition at the joint between a rigid structure and apipeline. The analysis results are compared for both non-reinforied and reinforced cases to measure the effectiveness of the soil reinforcement for restraining the settlement of the pipeline.

  • PDF

매설관 하부지반-보강재 상호작용의 수치모델 연구 (Numerical Modeling of Soil-Reinforcement Interaction Under a Buried Pipeline)

  • 손준익;정하익
    • 전산구조공학
    • /
    • 제4권3호
    • /
    • pp.129-135
    • /
    • 1991
  • 본 논문에서는 유한요소해석을 통하여 부등침하를 받는 매설관 기초지반 보강의 적용성과 지반보강 상호작용에 의하여 매설관 연결부 하부에서의 부등침하를 최소화 할 수 있는 방안에 관하여 다루었다. 매설관의 일단이 구조물에 고정되어 있는 경계조건에 대하여 상호비교하여 지반보강에 따른 응력전이 효과와 이로인한 배설관 침하억제 효과를 수치적으로 분석하였다.

  • PDF

해양플랫폼 탑사이드 모듈의 해상 운송 시 국부 보강을 통한 피로 수명 개선에 관한 연구 (Improvement of Fatigue Life with Local Reinforcement for Offshore Topside Module during Marine Transportation)

  • 장호윤;서광철;박주신
    • 해양환경안전학회지
    • /
    • 제27권2호
    • /
    • pp.387-393
    • /
    • 2021
  • 본 연구에서는 해양플랫폼의 탑사이드 구조에서 주로 채택하고 있는 파이프 연결 구조의 피로 수명 증가를 위한 방안을 찾기 위하여, 유한요소해석을 수행하였다. 상용해석프로그램인 MSC Patran/Nastran을 적용하였으며, 대표적인 중앙부 구조 형상을 해석모델로 선정하였다. 하중에 따른 응력집중 현상을 구현하기 위하여, 8 절점 솔리드 요소를 이용한 모델링을 구현하였다. 주요하중은 횡방향 하중 2가지와 대각선 파이프에 인장 하중을 고려하였다. 주요 위치에서의 Hot spot 응력을 확인하기 위하여, 0.01 mm dummy 쉘 요소를 적용하였으며, 0.5 t와 1.5 t 위치에서의 주응력을 계산한 후 외삽법에 따라 용접부에 발생하는 응력을 추정하였다. 일부 구간에서는 만족해야 하는 피로 수명 이하로 평가되어, 보강이 필요하였다. 보강은 기존 설계된 파이프의 두께나 지름을 변경하지 않고, 피로수명이 부족한 부위에 응력집중계수를 낮출 수 있도록 브래킷을 추가하였다. 인장 하중에 대해서는 bracket toe에서 응력은 23 % 증가하였고, 기존에 문제가 된 파이프의 내측, 외측에서의 응력은 약 8 % 감소하였다. 휨 하중에 대해서는 bracket toe에서 응력은 3 % 증가하였고, 기존에 문제가 된 파이프의 내측, 외측에서의 응력은 약 48 % 감소하였다. 신규 브래킷 보강으로 인하여, bracket toe의 응력증가가 발생하였지만, S-N 커브 자체가 파이프 조인트에 비해 좋으므로 큰 문제가 되지는 않는다. 본 연구에서 적용한 국부 보강을 통한 피로 수명 개선 방법은 기존 설계안의 변경을 최소화하면서 피로 수명 증가를 효율적으로 할 수 있다는 점에서 관련 산업에서 유용하게 활용될 수 있을 것으로 기대된다.

아라미드 섬유강화 및 고무조성에 따른 콘크리트 도킹호스의 파열압력과 내마모도 특성 (Characteristics of Burst Pressure and Abrasion Resistance of Concrete Hose with Aramid Fiber Reinforcement and Rubber Composition)

  • 김용환;이승환;성일경;이여울;강명창
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.105-110
    • /
    • 2018
  • A concrete docking hose of pump car's boom pipe line have been used in many construction sites. They are long structures with continuous cornering, similar to a trunk of the elephant, characterized by a very high pressure resistance of 20MPa. They need flexible materials and structure in order to move the hose smoothy. But commercial concrete hose is hard to handle and heavy owing to adaption of steel reinforcement. In this study, it is tried an experimental approach to the characteristic of inner rubber layer and abrasion resistance. Also, we are investigated the bursting pressure according to the reinforcement of the hose and propose the usefulness of the hose reinforced with high strengthened aramid fiber.

복개 구조물을 이용한 저토피 계곡부 터널의 통과방안에 대한 연구 (A study on the shallow tunneling method using cover structure)

  • 정용진;남현우;최호식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.564-569
    • /
    • 2005
  • Usually, Steel pipe grouting method or cut and cover method has been applied to tunnel with very shallow overburden or it is situated in valley. However, in case of lack of overburden height to reinforcement tunnel crown which is very difficult to construction. Also, application of cut and cover method that do not consider surrounding site condition causes popular enmity generation and environmental damage. It is the best alternative method that reduces the amount of excavated soil and excavate tunnel under ground to solve these problems. The tunneling method using cover structure which is to prevent a tunnel from collapse because this method can be reduce excavation area and construct tunnel under ground after set a cover structure and backfill ground. In this study, to know more effective structure type, comparative analysis was performed to behavior characters of slab and arch type construction that can be used to cover structure. Also a 2D and 3D numerical analysis have been performed to verify the stability of ground during excavation. As the result, the tunneling method using cover structure that it can be good alternative method for tunnel with shallow overburden and it through valley

  • PDF

The effect of nanoparticle in reduction of critical fluid velocity in pipes conveying fluid

  • Ghaitani, M.M.;Majidian, A.;Shokri, V.
    • Advances in concrete construction
    • /
    • 제9권1호
    • /
    • pp.103-113
    • /
    • 2020
  • This paper deal with the critical fluid velocity response of nanocomposite pipe conveying fluid based on numerical method. The pressure of fluid is obtained based on perturbation method. The motion equations are derived based on classical shell theory, energy method and Hamilton's principle. The shell is reinforced by nanoparticles and the distribution of them are functionally graded (FG). The mixture rule is applied for obtaining the equivalent material properties of the structure. Differential quadrature method (DQM) is utilized for solution of the motion equations in order to obtain the critical fluid velocity. The effects of different parameters such asCNT nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios and internal fluid are presented on the critical fluid velocity response structure. The results show that with increasing the CNT nanoparticles, the critical fluid velocity is increased. In addition, FGX distribution of nanoparticles is the best choice for reinforcement.

그라우팅에 의한 터널 보강효과의 해석적 연구 (A Study on the Tunnel Stability using Grouting Technique)

  • 이종우;이준석;김문겸
    • 터널과지하공간
    • /
    • 제6권4호
    • /
    • pp.298-305
    • /
    • 1996
  • Grouting technique is frequently used where a tunnel structure is passing through the shallow overburden area or where the thickness of hard rock above the tunnel is rather thin. However, engineering background on design process of the grout reinforcement does not seem to be fully understood until now. Mechanics of composite material is, therefore, introduced in this study to investigate the orthotropic material properties of the composites containing soil(or rock) and grouting material. These orthotropic material properties can be used to represent the reinfocement effects quantitatively. The model developed in this study is next applied to a typical tunnel structure and the grouting effect is analyzed numerically. The idea used in this study can be expanded to a situation where a pipe roofing or a forepoling technique is adopted and a simplified design procedure, similar to the model model introduced in this study, can be developed.

  • PDF