• Title/Summary/Keyword: Pipe insulation

Search Result 94, Processing Time 0.023 seconds

Static displacement and elastic buckling characteristics of structural pipe-in-pipe cross-sections

  • Sato, M.;Patel, M.H.;Trarieux, F.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.263-278
    • /
    • 2008
  • Structural pipe-in-pipe cross-sections have significant potential for application in offshore oil and gas production systems because of their property that combines insulation performance with structural strength in an integrated way. Such cross-sections comprise inner and outer thin walled pipes with the annulus between them fully filled by a selectable thick filler material to impart an appropriate combination of properties. Structural pipe-in-pipe cross-sections can exhibit several different collapse mechanisms and the basis of the preferential occurrence of one over others is of interest. This paper presents an elastic analyses of a structural pipe-in-pipe cross-section when subjected to external hydrostatic pressure. It formulates and solves the static and elastic buckling problem using the variational principle of minimum potential energy. The paper also investigates a simplified formulation of the problem where the outer pipe and its contact with the filler material is considered as a 'pipe on an elastic foundation'. Results are presented to show the variation of elastic buckling pressure with the relative elastic modulus of the filler and pipe materials, the filler thickness and the thicknesses of the inner and outer pipes. The range of applicability of the simplified 'pipe on an elastic foundation' analysis is also presented. A brief review of the types of materials that could be used as the filler is combined with the results of the analysis to draw conclusions about elastic buckling behaviour of structural pipe-in-pipe cross-sections.

The Failure Analysis of Double Pipe for Insulation Used Power Plant by Grooving Corrosion (발전소용 이중보온용 강관의 홈부식(Grooving Corrosion)에 의한 파손 분석)

  • Ham, Jong-Oh;Park, Ki-Duck;Park, Sung-Jin;Sun, Il-Sik
    • Journal of Applied Reliability
    • /
    • v.15 no.3
    • /
    • pp.197-206
    • /
    • 2015
  • Failure analysis of pre-insulated pipe (SPPS 380, 400A) transporting high temperature water ($95{\sim}110^{\circ}C$) for a plant was carried out. The damaged area (${\Phi}5mm$) of pre-insulated pipe was found only on welds. The chemical composition of damaged pipe meets specification of carbon steel pipes for pressure service (KS D 3562). As results of microstructure analysis, crack propagated from outer to inside after pitting corrosion occurred on the outside surface. The non-metallic inclusion existed on the end of crack. And the non-metallic inclusion continuously and linearly formed along with the bond line of welds. Based on SEM-EDS analysis, the nonmetallic inclusions have higher Manganese (Mn) and Oxygen (O) content but sulfur (S) was not detected. As results of water quality analysis, hydrogen ion concentration and minerals like Fe, Mg, Si were in low level. But the content of dissolved oxygen (11.2 ppm) was slightly higher than that of standard. It seems that the cause of damaged pipe is grooving corrosion due to MnO inclusion formed on bond line and corrosion took place nearby welds.

A Study on the Internal Temperature Reduction of PKG-A Water-jet-room by Substituting Heat Insulation Materials (단열재 개선을 통한 PKG-A Water Jet Room 온도저감 연구)

  • Jung, Young In;Choi, Sang Min
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.3
    • /
    • pp.425-435
    • /
    • 2019
  • Purpose: The purpose of this study was to resolve the Naval ship's Local Operation Panel(LOP) malfunction problems which caused by overheating in summer season and dispatching to equatorial regions. Methods: Instead of using dual type heat insulation materials(consist with ceramic wool and glass wool), aerogel heat insulation materials were used for decreasing heat emissions from gas-turbine heat waste steam pipes passing water-jet- room. Experiment and Computational analysis of heat flow were conducted to analyze the internal room temperature changes. Results: The results of this study are as follows; The aerogel heat insulation materials suppress heat emission more efficiently than dual type insulation materials. The cold surface temperature of insulation was far more decreased and internal room, LOP surface temperature also showed significant results too. Conclusion: The substituted heat insulation materials appeared remarkable performance in decreasing room temperature that it could be used for suppressing the LOP overheatings and malfunctions.

A Study on the Application Method of Flexible Pipe for District Heating in Korea (지역난방용 Flexible Pipe 활용방안 연구)

  • Lee, Ki-Seb;Park, Nam-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.637-642
    • /
    • 2008
  • The concept of district heating involves centralised heat production where heat is distributed to consumer via a piping network. The objective of this work is to identify the Flexible Pipe from an economy, execution, maintenance point of view. Flexible Pipe has in some countries, especially in Europe, been used for many years in district heating. In spite of years of experience, there still exist doubts about the possibilities of using flexible pipes in district heating applications, mostly because of no experiences in domestic market. The advantage of flexible pipe systems is their flexibility. This holds not only for the inner pipe but also for the total pipe system including insulation and jacket. Even for the largest diameter the minimum radius of curvature is given to 1.5m. The most important difference between flexible pipe systems and preinsulated steel pipes is their simple and quick assembly. Such information could provide a basis for making reasonable hypotheses about consumer preferences, to foam a basis for making future marketing more effective.

  • PDF

Test of Independence Between Variables to Estimate the Frequency of Damage in Heat Pipe (열수송관 파손빈도 추정을 위한 변수간 독립성 검정)

  • Myeongsik Kong;Jaemo Kang;Sungyeol Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.61-67
    • /
    • 2023
  • Heat pipes located underground in urban areas and operated under high temperature and pressure conditions can cause large-scale human and economic damage if damaged. In order to predict damage in advance, damage and construction information of heat pipe are analyzed to derive independent variables that have a correlation with frequency of damage, and a simple regression analysis modified model using each variable is applied to the field. However, as the correlation between independent variables applied to the model increases, the independence between variables is harmed and the reliability of the model decreases. In this study, the independence of the pipe diameter, burial depth, insulation level of monitoring system, and disconnection or short circuit of the detection line, which are judged to be interrelated, was tested to derive a method for combining variables and setting categories necessary to apply to the frequency of damage estimation model. For the test of independence, the continuous variables pipe diameter and burial depth were each converted into three categories, insulation level of monitoring system was converted into two categories, and the categorical variable disconnection or short circuit of the detection line status was kept as two categories. As a result of the test of independence, p-value between pipe diameter and burial depth, level of monitoring system and disconnection or short circuit of the detection line was lower than the significance level (α = 0.05), indicating a large correlation between them. Therefore, the pipe diameter and burial depth were combined into one variable, and the categories of the combined variable were set to 9 considering the previously set categories. The insulation level of monitoring system and the disconnection or short circuit of the detection line were also combined into one variable. Since the insulation level is unreliable when the detection line status is disconnection or short circuit, the categories of the combined variable were set to 3.

Design for Strengthening Structural Integrity of the Reflective Metal Insulation in the Nuclear Power Plant (원전 금속단열재의 구조 건전성 강화를 위한 설계 방안)

  • Lee, Sung Myung;Eo, Min Hun;Kim, Seung Hyun;Jang, Kye Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.107-113
    • /
    • 2015
  • The goal of this paper is to investigate structural integrity factors of RMI(reflective metal insulation) to confirm the design requirements in nuclear power plant. Currently, a glass wool insulation is using now, but it will gradually be replaced with the reflective metal insulation maded by stainless steel plates. The main function of an insulation is to minimize a heat loss of vessel and pipes in RCS(reactor coolant system). It has to maintain structural a integrity in nuclear power plant life duration. In this study, the structural integrity analysis was carried out both multi-plate and outer shell plate by using a static analysis and experimental test. First, inner multi-plate has a self support structure for being air space. Because the effect of total static weight in multi-layer plate is low, a plate collapse possibility is not high. Considering optimum thin plate pressing process, it has to pre-check the basic physical properties. Second, the outer segment thickness and stiffener shape are verified by the numerical static analysis, and sample test for both type of panel and cylindrical pipe model.

Analysis of the Vibration Transmitting Characteristics of the Insulation-foam for Reducing Refrigerant-induced Noise of a Refrigerator (냉장고 냉매소음 저감을 위한 단열 발포재의 진동 전달특성 분석)

  • Han, Hyung-Suk;Kim, Min-Sung;Jeong, Weui-Bong;Seo, Min-Young;Lee, Soo-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.45-50
    • /
    • 2010
  • In the refrigerator, the two-phase refrigerant-induced noise of the capillary tube in an evaporator-inlet pipe has been a great concern. The capillary tube is usually covered with insulation-foam packed in the space between inner and outer cabinets without any vibration isolation. Therefore, the refrigerant-induced vibration of the capillary tube can be easily transferred to the outer cabinet, which may increase the radiated noise. In this paper, the characteristics of transferred vibration through the insulation-foam are investigated experimentally by using the refrigerantsupplying equipment. The frequency characteristics, such as dynamic Young's modulus and loss factor, of the insulation-foam are also discussed.

A Study on the Status and Improvement of Double Pipe System in Apartment Buildings (공동주택 이중관 공법의 현안 분석 및 개선 연구)

  • Kim, Myoung-Seok;Kim, Youngil;Chung, Kwang-Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • Double pipe system in which PB pipe is inserted in CD pipe buried in the concrete slab is widely used for cold and hot water supplies in apartment housings. The system, however becomes complicated and the overlaying pipes in the concrete slab weaken the compressive strength of the slab. Also, insufficient insulation increases energy loss. In this work, the problems of the double pipe system are studied and plans A, B, and C are suggested for improvement. In terms of compressive strength of the concrete slab, plan A(total pipe length 73 m) was the weakest and plan B(2 m) was the strongest. Energy loss of plan A was the largest with 558.9 W and plan B was the lowest with 220.7 W. However, considering the combined effect of strength and heat loss, plan C becomes the best choice, which retains the advantage of the double pipe system.

An Experimental Study of surface temperature distribution in Flat-Plate Heat Pipe (평판형 히트파이프의 표면온도 분포에 관한 실험적 연구)

  • Joo, Sang-Hyun;Lee, Young-Soo;La, Ho-Sang;Jo, Sung-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.635-639
    • /
    • 2007
  • In this study, optimal design and test of flat-plate heat pipe were carried out in order to improve both thermal response and surface temperature uniformity of heating plate. Experimental results show that the thermal response of flat-plate heat pipe is faster than that of a conventional heating type ones along with less weight and cost. The surface temperature uniformity is also improved.

  • PDF

A Study on the Refractory Performance Verification of the Thermal Insulators for AES Ducts and Piping (AES 계열 덕트·배관 단열재의 내화성능 검증에 관한 연구)

  • Kwang-Ho Ham;Jea-Chun Sa;Joo-Hwan Lee;Se-Hong Min
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.419-429
    • /
    • 2024
  • Purpose: To enhance the non-combustibility of fire protection piping insulation and improve the heat resistance of smoke extraction duct insulation, I plan to verify the suitability of AES insulation materials for these applications through performance testing. Method: The non-combustibility, heat resistance, and thermal insulation performance of AES insulation materials will be verified through various tests. Result: According to the 'Standards for Flame Retardancy and Fire Spread Prevention of Building Finishing Materials,' the results of non-combustibility and gas toxicity tests confirmed the non-combustible properties. The standard fire resistance tests verified the fire resistance performance. Additionally, the thermal insulation performance was confirmed through building insulation tests. Conclusion: As the performance tests on AES inorganic insulation materials have proven their noncombustibility, fire resistance, and thermal insulation performance, these materials are considered a viable alternative for improving fire spread prevention in buildings.