• Title/Summary/Keyword: Pipe Noise

Search Result 438, Processing Time 0.024 seconds

Design of Compressor Loop Pipe Using CAE (CAE에 의한 압축기 배관의 설계)

  • 박성근;조성욱;김형석;임금식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.04a
    • /
    • pp.71-74
    • /
    • 1993
  • The purpose of this paper is that the compressor design engineers reduce a development term with CAE approach. By using CAE, geometries for various type of piping systems can be constructed interactively and the Vibration Characteristics and Stress distribution are analyzed by FEM. Sensitivity and structural modification analysis capability are also used to reduce the total number of prototypes. An example is shown to validate the effectiveness of this system.

  • PDF

Acoustic Characteristics of Perforated Pipe in Terms of Nondimensional Wave Number and Porosity (공극관의 음향학적 특성과 수치해석방법)

  • 윤두병;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.42-47
    • /
    • 1992
  • 본 연구에서는 공극관의 실험인자에 대한 특성을 알아보기 위하여 공극관에 입사되는 음파의 파수 k와 공극분포부분들 사이의 거리인 a의 곱으로 나타나는 무차원변수 ka와, 공극관의 단면적에 대한 전체 공극면적의 비로 정의한 공극률을 실험인자로 하여 연구를 진행하였다. 또한 sulivan의 모델을 이용하여 공극관을 모델링하고 이를 컴퓨터를 사용하여 모의 실험을 한 후 실험결과와 비교하였다.

  • PDF

Vibration Reduction of Pump And Pipe System (배관계와 조합된 대형 수직펌프의 유체진동 저감)

  • 배춘희;김성휘;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.263-266
    • /
    • 2004
  • In this paper, Firstly, it is shown that the high vibration source of piping and pump system is the Resonanse of pump and piping system. Secondly, in order to decrese the high vibration of pump and piping system, some practical Friction damper with high damping have been developed and its effectiveness is investigated as installing it at piping system practically.

  • PDF

The Analysis of Piping Vibration by EFD (EFD를 이용한 곡관부 배관계에 발생하는 유체진동 해석)

  • 배춘희;조철환;양경현;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1070-1072
    • /
    • 2003
  • In this paper, Firstly, it is shown that the high vibration source of piping system is the pulsation transmission of pipe line element ,such as, orifice plate, valves and the control valve is a broad band source and the branch wall and the cavity have vortex frequency Secondly, in order to decrese the turbulence vibration of piping system, the practical analysis of piping flow by EFD have been developed and its effectiveness is investigated as applying it at piping system practically.

  • PDF

Chaotic Vibration of a Curved Oipe Conveying Oscillatory Flow (조화진동유동을 포함한 곡선파이프계의 혼돈운동 연구)

  • 박철희;홍성철;김태정
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.288-294
    • /
    • 1996
  • In this paper, Chaotic motions of a curved pipe conveying oscillatory flow are theoretically investigated. The nonlinear partial differential equation of motion is derived by Newton's method. The transformed nonlinear ordinary differential equation is a type of Hill's equation, which have the parametric and external excitation. Bifurcation curves of chaotic motion of the piping systems are obtained by applying Melnikov's method. Poincare maps numerically demonstrate theoretical results and show transverse homoclinic orbit of the chaotic motion.

  • PDF

Impedance Tube Measurements of Sound Absorbing Materials: Sensitivity Analysis on Backing Conditions (임피던스 관을 이용한 흡음재의 특성 임피던스 측정: 배후조건에 따른 민감도 분석)

  • 이종화;이정권;박봉현;김병훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.888-891
    • /
    • 2001
  • Effects of backing conditions on the impedance tube measurement are investigated experimentally, by using several pairs of generally employed end conditions. The results show that the measured values are similar for most of pairs, except the case of using an open pipe condition. In addition, the random error is investigated in the viewpoint of the variation of test conditions. The multi-termination method is suggested for minimizing such a random error.

  • PDF

Vibration of Pipes Coupled with Internal and External Fluids (내부 및 외부 유체와 연성된 파이프의 진동 해석)

  • Ryue, Jung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.142-150
    • /
    • 2012
  • The waveguide finite element (WFE) method is a useful numerical technique to investigate wave propagation along waveguide structures which have uniform cross-sections along the length direction ('x' direction). In the present paper, the vibration and radiated noise of the submerged pipe with fluid is investigated numerically by coupling waveguide finite elements and wavenumber boundary elements. The pipe and internal fluid are modelled with waveguide finite elements and the external fluid with wavenumber boundary elements which are fully coupled. In order to examine this model, the point mobility, dispersion curves and radiated power are calculated and compared for several different coupling conditions between the pipe and internal/external fluids.

A Study of Dynamic Response in a Pipeline for Design of Hydraulic Circut (유압회로 설계를위한 유압관로에서의 동특성연구)

  • Kim, Ji-Hwan;Kim, Kwang-Ho;Shin, You-Hwan;You, Young-Tae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2024-2030
    • /
    • 2003
  • Design for a quite operation of fluid power system requires the understanding of noise and vibration characteristics of the system. This paper presents a dynamic response for design of hydraulic circuit. Experimental investigations on the attenuation characteristics of pressure ripple in automotive power steering hydraulic pipe with dynamic response of hydraulic pipe line is examined. Also, a mathematical model of hydraulic pipe is proposed to support design of the hydraulic circuit and analyze the attenuation characteristics of pressure ripples in a hydraulic pipe line. And analyze the impedance characteristics to determine the postion to construct accumulator for attenuation the pressure pulsation. The experimental results show that the pulsation attenuation characteristics of hydraulic hoses is remarkably affected by the flexible metal tube inserted coaxially inside a hydraulic hose with a finite length as well as viscoelastic properties of hose wall. It is also shown that the predicted results by the model proposed here agree well with the measured results over a wied range of frequency;

  • PDF

The effect of suction pipe leaning angle on the internal flow of pump sump

  • Lee, Youngbum;Kim, Kyung-Yup;Chen, Zhenmu;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.849-855
    • /
    • 2015
  • A better flow condition for the intake of pump is provided by the sump pump that connects the forebay to the intake of the pump station. If the suction sump is improperly shaped or sized, air-entraining vortices or submerged vortices may develop. These phenomena may greatly affect pump operation if vortices become sufficiently large. Moreover, any remaining vortices in the pump flow passage may result in an increase in the noise and vibration of the pump. Therefore, the vortices in the pump flow passage must be reduced to achieve good pump sump station performance. In this study, the effect of suction pipe leaning angle on the pump sump's internal flow is investigated. Additionally, a pipe type with an elbow shape is investigated. The results show that the air entraining vortices occur under the condition of a water level ratio H/D = 1.31 for each suction pipe type.