• Title/Summary/Keyword: Pipe Network Analysis

Search Result 154, Processing Time 0.027 seconds

Recent Progress in Air Conditioning and Refrigeration Research - A Review of papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 1998 and 1999 - (공기조화, 냉동 분야의 최근 연구 동향 - 1998년 1999년 학회지 논문에 대한 종합적 고찰 -)

  • 이재헌;김광우;김병주;이재효;김우승;조형희;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.12
    • /
    • pp.1098-1125
    • /
    • 2000
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 1998 and 1999 has been done. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environment. The conclusions are as follows. 1) A review of the recent studies on fluid flow, turbomachinery and pipe-network shows that many experimental investigations are conducted in applications of impingement jets. Researches on turbulent flows, pipe flows, pipe-networks are focused on analyses of practical systems and prediction of system performance. The results of noise reduction in the turbomachinery are also reported. 2) A review of the recent studies on heat transfer analysis and heat exchanger shows that there were many papers on the channel flow with the application to the design of heat exchanger in the heat transfer analysis. Various experimental and numerical papers on heat exchanger were also published, however, there were few papers available for the analysis of whole system including heat exchanger. 3) A review of the recent studies on heat pump system have focused on the multi-type system and the heat pump cycle to utilize treated sewage as the heat source. The defrosting and the frosting behaviors in the fin-tube heat exchanger is experimentally examined by several authors. Several papers on the ice storage cooling system are presented to show the dynamic simulation program and optimal operation conditions. The study on the micro heat pipes for the cooling of high power electronic components is carried out to examine the characteristics of heat and mass transfer processed. In addition to these, new type of separate thermosyphon is studied experimentally. 4) The recent studies on refrigeration/air conditioning system have focused on the system performance and efficiency for new alternative refrigerants. New systems operating with natural refrigerants are drawing lots of attention. In addition to these, evaporation and condensation heat transfer characteristics of traditional and new refrigerants are investigated for plain tubes and also for microfin tubes. Capillary tubes and orifice are main topics of research as expansion devices and studies on thermophysical properties of new refrigerants and refrigerant/oil mixtures are widely carried out. 5) A review of the recent studies on absorption cooling system shows that numerous experimental and analytical studies on the improvement of absorber performance have been presented. Dynamic analysis of compressor have been performed to understand its vibration characteristics. However research works on tow-phase flow and heat transfer, which could be encountered in the refrigeration system and various phase-change heat exchanger, were seemed to be insufficient. 6) A review of recent studies on duct system shows that the methods for circuit analysis, and flow balancing have been presented. Researches on ventilation are focused on the measurement of ventilation efficiency, and variation of ventilation efficiency with ventilation methods by numerous experimental and numerical studies. Furthermore, many studies have been conducted in real building in order to estimate indoor thermal environments. Many research works to get some information for cooling tower design have been performed but are insufficient. 7) A review on the recent studies on architectural thermal environment and building mechanical systems design shows that thermal comfort analysis is sitting environment, thermal performance analysis of Korean traditional building structures., and evaluation of building environmental load have been performed. However research works to improve the performance of mechanical system design and construction technology were seemed to be insufficient.

  • PDF

Capacity Expansion Modeling of Water-distribution Network using GIS, VE, and LCC (GIS와 VE, LCC 개념에 의한 동적 상수도관망 대안 결정)

  • Kim, Hyeng-Bok
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1999.12a
    • /
    • pp.21-25
    • /
    • 1999
  • Planning support systems(PSS) add more advanced spatial analysis functions than Geographic information systems(GIS) and intertemporal functions to the functions of spatial decision support systems(SDSS). This paper reports the continuing development of a PSS providing a framework that facilitates urban planners and civil engineers in conducting coherent deliberations about planning, design and operation & maintenance(O&M) of water-distribution networks for urban growth management. The PSS using dynamic optimization model, modeling-to-generate-alternatives, value engineering(VE) and life-cycle cost(LCC) can generate network alternatives in consideration of initial cost and O&H cost. Users can define alternatives by the direct manipulation of networks or by the manipulation of parameters in the models. The water-distribution network analysis model evaluates the performance of the user-defined alternatives. The PSS can be extended to include the functions of generating sewer network alternatives, combining water-distribution and sewer networks, eventually the function of planning, design and O&H of housing sites. Capacity expansion by the dynamic water-distribution network optimization model using MINLP includes three advantages over capacity expansion using optimal control theory(Kim and Hopkins 1996): 1) finds expansion alternatives including future capacity expansion times, sizes, locations, and pipe types of a water-distribution network provided, 2) has the capabilities to do the capacity expansion of each link spatially and intertemporally, and 3) requires less interaction between models. The modeling using MINLP is limited in addressing the relationship between cost, price, and demand, which the optimal control approach can consider. Strictly speaking, the construction and O&M costs of water-distribution networks influence the price charged for the served water, which in turn influence the. This limitation can be justified in rather small area because price per unit water in the area must be same as that of neighboring area, i.e., the price is determined administratively. Planners and engineers can put emphasis on capacity expansion without consideration of the relationship between cost, price, and demand.

  • PDF

A Study on the Development of the Computer Aided Analysis and Design System of the riping Networks of Industrial Plants (산업플랜트 배관계통의 해석 및 설계시스템 개발에 관한 연구)

  • Yoo Chong Yul;Choi Chang Koon;Lee Chong Won;Oh Jae Wha
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.6 no.4
    • /
    • pp.262-266
    • /
    • 1977
  • A new computer system for the stress analysis and design of piping network has been devlo-ped in this study. For the stress analysis, the system utilizes the finite element technique in which the frontal technique is used as the equation solver. The element library of the system has (1) Pipe Element (2) Beam Element, (3) Hanger Element and (4) Spring Element which should be sufficient to model the entire piping system including flexible supports, joints, piping rack and hangers. Based on the element stresses, code check has been performed and the safety factor for each element is calculated.

  • PDF

Study of Rehabilitation Priority Order of Pipes for Water Distribution Systems using Utopian Approach (Utopian Approach를 이용한 상수관망 개별관로 개량우선순위 산정에 관한 연구)

  • Yoo, Do-Guen;Jun, Hwan-Don;Kim, Joong-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.183-193
    • /
    • 2010
  • Well planned rehabilitation order of pipes is essential for efficient maintenance and management of Water Distribution Systems. In this study, not only deterioration rate of pipes but also structural and nonstructural failure which causes abnormal condition of WDS is considered to determine rehabilitation order. Probabilistic Neural Network is used for calculating deterioration rate at present and the importance of pipes is computed under structural and nonstructural failure by using Pipe by Pipe Failure Analysis and Effect Index. Utopian Approach, one of the Multi-Criteria Decision Making methods, is used for assessment of final rehabilitation order based on distance measure between utopian point and alternative one. Developed model in this study shows that it gives more reliable results than existing methods considering hydraulic relative importance does in application to real networks. In this point, the newly developed model, which gives advantages over existing models, can make a credible decision and simple application.

Experimental Study on Leak-induced Vibration in Water Pipelines Using Fiber Bragg Grating Sensors

  • Kim, Dae-Gil;Lee, Aram;Park, Si-Woong;Yeo, Chanil;Bae, Cheolho;Park, Hyoung-Jun
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.137-142
    • /
    • 2022
  • Leak detection is one of the most important challenges in condition monitoring of water pipelines. Fiber Bragg grating (FBG) sensors offer an attractive technique to detect leak signals. In this paper, leak measurements were conducted on a water distribution pilot plant with a length of 270 m and a diameter of 100 mm. FBG sensors were installed on the pipeline surface and used to detect leak vibration signals. The leak was demonstrated with 1-, 2-, 3-, and 4-mm diameter leak holes in four different pipe types. The frequency response of leak signals was analyzed by fast Fourier transform analysis in real time. In the experiment, the frequency range of leak signals was approximately 340-440 Hz. The frequency shifts of leak signals according to the pipe type and the size of the leak hole were demonstrated at a pressure of 1.8 bar and a flow rate of 25.51 m3/h. Results show that frequency shifts detected by FBG sensors can be used to detect leaks in pipelines.

A Study on the Component Design for Water Network Analysis (상수도 관망해석 컴포넌트 설계에 관한 연구)

  • Kim, Kye-Hyun;Kim, Jun-Chul;Park, Tae-Og
    • Journal of Korea Spatial Information System Society
    • /
    • v.2 no.2 s.4
    • /
    • pp.75-84
    • /
    • 2000
  • GIS has been building for various application fields with the aids of NGIS project, especially numerous municipal governments are building a UIS in the level of local governments' informatization. Although there are some difference between municipal governments' business, still many things are in common. So far, individual municipal governments have developed a UIS for their own use, which lead to duplicated development of the UIS. The component technology has been introduced to remove such duplicated efforts and it enabled maximizing the reusablilty of the UIS already developed. This paper proposes a component design for network analysis of the drinking water to calculate the amount of flow and the head loss. This component design provides the initial water amount to estimate the amount of the network flow and the head loss, thereby supports the decision making such as installation or extension of the pipe network. The process of the component design accompanies the business reengineering to support the standardized business work flow. Also, the design of the network analysis component uses the algorithms induced with UML specification. Based on the component design, the component development has been progressing and the network analysis system would be followed. In the near future, another component to integrate the network analysis and the business related to the drinking water needs to be developed.

  • PDF

Development of a Dynamic Model for Water Quality Simulation during Unsteady Flow in Water Distribution Networks (부정류 흐름에서 상수관망 수질해석을 위한 동역학적 모형의 개발)

  • Choi, Doo-Yong;Cho, Won-cheol;Kim, Do-Hwan;Bae, Cheol-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.609-617
    • /
    • 2012
  • A dynamic water quality model is presented in order to simulate water quality under slowly varying flow conditions over time. To improve numerical accuracy, the proposed model uses a lumped system approach instead of extended period simulation, unlike the other available models. This approach can achieve computational efficiency by assuming liquid and pipe walls to be rigid, unlike the method of characteristics, which has been successfully implemented in rapidly varying flows. The discrete volume method is applied to resolve the advection and reaction terms of the transport equation for water quality constituents in pipes. Numerical applications are implemented to the pipe network examples under steady and unsteady conditions as well as hydraulic and water quality simulations. The numerical results are compared with EPANET2, which is a widely used simulation model for a water distribution system. The model results are in good agreement with EPANET2 for steady-state simulation. However, the hydraulic simulation results under unsteady flows differ from those of EPANET2, which causes a deviation in water quality prediction. The proposed model is expected to be a component of an integrated operation model for a water distribution system if it is combined with a computational model for rapidly varying flows to estimate leakage, pipe roughness, and intensive water quality.

The Estimation of Friction Velocity by Hydraulic Parameters Reflecting Turbulent Flow Characteristics in a Smooth Pipe Line (매끄러운 관수로 내 난류흐름특성을 반영한 수리학적 매개변수에 의한 마찰속도의 산정)

  • Choo, Tai Ho;Son, Jong Keun;Kwon, Yong Been;Ahn, Si Hyung;Yun, Gwan Seon
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.4
    • /
    • pp.614-623
    • /
    • 2016
  • Grid(pipe network) design is an important element of Smart Water Grid, which essential to estimate hydraulic parameters such as the pressure, friction factor, friction velocity, head loss and energy slope. Especially, friction velocity in a grid is an important factor in conjunction with energy gradient, friction coefficient, pressure and head loss. However, accurate estimation friction head loss, friction velocity and friction factor are very difficult. The empirical friction factor is still estimated by using theory and equation which were developed one hundred years ago. Therefore, in this paper, new equation from maximum velocity and friction velocity is developed by using integration relationship between Darcy-Weisbach's friction head loss equation and Schlichting equation and regression analysis. To prove the developed equation, smooth pipe data areis used. Proposed equation shows high accuracy compared to observed data. Study results are expected to be used in stability improvements and design in a grid.

Development of Rehabilitation and Management Techniques for Old Water Distribution Systems (기존 상수도 노후관망의 개량 및 관리 기법의 개발)

  • 김중훈;김종우
    • Water for future
    • /
    • v.29 no.3
    • /
    • pp.197-205
    • /
    • 1996
  • Flow carrying capacity of water distribution systems is getting reduced by deterioration of pipes in the systems. The objective of this study is to develop a managerial decision-making model for the rehabilitation of water distribution systems with a minimum cost. The decisions made by the model also satisfy the requirements for the discharge and pressure at demanding nodes in the system. The replacement cost, pipe break repair cost, and pumping cost are considered in the economic evaluation of the decision along with the break ratio and interest ratio to determine the optimal replacement time for each pipe. Then, the hydraulic integrity of the water distribution system is checked for the decision by a pipe network simulator, KYPIPE, if the discharge and pressure requirements, the decision made for the optimal replacement time is revised until the requirements are satisfied. The model is applied to an existing water distribution system, the Metropolita Water Supply Project (1st Phase). The result shows that the decisions for the replacement time determined by the economix analysis are accepted as optimal and the hydraulic integrity of the system is in good condition.

  • PDF

Establishment of natural gas high-pressure pipeline network model in Korea (천연가스 전국 고압 배관망 모델 수립)

  • Park Young;Lee Young Chul;Lee Jeong Hwan;Cho Byoung Hak;Lim Jong Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.43-51
    • /
    • 2001
  • ln this study, a natural gas pipeline network model was established using STONER. First a map of natural gas pipeline network was drawn on STONER and then the length and diameter of the pipe were inputted. And as the specific gravity of gas flowing in the pipeline which is the value of natural gas was inputted. Finally in order to decide the pipeline variables and gas temperature, through the verification with observed real data, the possible error was minimized. For the verification, the pipeline variables and gas temperature were assumed and the pipeline network analysis was accomplished with real demand data. The square deviation of analysed pressure from observed pressure was calculated and the minimum case was selected for the optimum pipeline variables and gas temperature. Thus a proper natural gas pipeline network model for real network was established.

  • PDF