• Title/Summary/Keyword: Pipe Installation

Search Result 263, Processing Time 0.027 seconds

A Study of Structural Stability of HDPE Pipe during Installation (고밀도 폴리에틸렌 파이프의 설치중 구조안정성에 대한 연구)

  • Song, Hyun-Bae;Kim, Do-Kyun;Choi, Han-Suk;Park, Kyu-Sik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.59-66
    • /
    • 2015
  • In this study, structural stability of large diameter high density polyethylene (HDPE) pipe during installation was numerically investigated in order to investigate the effect of concrete collar dimension, water depth and tension (pulling force). From the numerical simulation results, the total stress of HDPE pipe with designed concrete collar was within 2.5%, so the total weight of concrete collar for sinking of HDPE is important rather than concrete collar dimension. Furthermore, the tension area for possible installation is decreased as the air filling rate is increased. Therefore, it is important to calculate the reasonable tension range before actual installation for safe installation of HDPE pipe.

Characteristics of Driving Efficiency and Bearing Capacity for Non-welded Long Steel Pipe Pile Method (무용접 장대강관말뚝 공법의 항타 및 지지력 특성)

  • 백규호;이상일;박진석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.381-388
    • /
    • 1999
  • The existing methods for installation of long steel pipe pile have some uneconomical problems such as increase of installation cost and period due to the welding of two piles and removal of soil plug, and decrease of driving efficiency due to the increase of driving resistance by time effect during the welding of piles and removal of soil plug, etc. Thus, in this study, new installation method for long steel pipe pile is suggested to work out the existing problems, and calibration chamber tests are peformed to investigate both driving and economical efficiency for the suggested method. The test results showed that the new installation method has increase bearing capacity as well as reduce installation cost and period for long steel pipe piles as compared with existing methods.

  • PDF

Multi-objective optimization of stormwater pipe networks and on-line stormwater treatment devices in an ultra-urban setting

  • Kim, Jin Hwi;Lee, Dong Hoon;Kang, Joo-Hyon
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.75-82
    • /
    • 2019
  • In a highly urbanized area, land availability is limited for the installation of space consuming stormwater systems for best management practices (BMPs), leading to the consideration of underground stormwater treatment devices connected to the stormwater pipe system. The configuration of a stormwater pipe network determines the hydrological and pollutant transport characteristics of the stormwater discharged through the pipe network, and thus should be an important design consideration for effective management of stormwater quantity and quality. This article presents a multi-objective optimization approach for designing a stormwater pipe network with on-line stormwater treatment devices to achieve an optimal trade-off between the total installation cost and the annual removal efficiency of total suspended solids (TSS). The Non-dominated Sorted Genetic Algorithm-II (NSGA-II) was adapted to solve the multi-objective optimization problem. The study site used to demonstrate the developed approach was a commercial area that has an existing pipe network with eight outfalls into an adjacent stream in Yongin City, South Korea. The stormwater management model (SWMM) was calibrated based on the data obtained from a subcatchment within the study area and was further used to simulate the flow rates and TSS discharge rates through a given pipe network for the entire study area. In the simulation, an underground stormwater treatment device was assumed to be installed at each outfall and sized proportional to the average flow rate at the outfall. The total installation cost for the pipes and underground devices was estimated based on empirical formulas using the flow rates and TSS discharge rates simulated by the SWMM. In the demonstration example, the installation cost could be reduced by up to 9% while the annual TSS removal efficiency could be increased by 4% compared to the original pipe network configuration. The annual TSS removal efficiency was relatively insensitive to the total installation cost in the Pareto-optimal solutions of the pipe network design. The results suggested that the installation cost of the pipes and stormwater treatment devices can be substantially reduced without significantly compromising the pollutant removal efficiency when the pipe network is optimally designed.

Determination and application of installation sequence of piping systems in cramped spaces of ships and offshore structures considering geometric relationship of pipe elements

  • Jang, MiSeon;Nam, Jong-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.60-70
    • /
    • 2020
  • The outfitting design of ships and offshore structures is mainly undertaken in a restricted space. Pipes occupying a large portion of outfitting design are normally manufactured outside the shipyard. This complicated manufacturing process results in frequent delivery delays. Inevitable design modifications and material changes have also resulted in inefficient pipe installation works. In this study, an algorithm is proposed to systematically determine the pipe installation sequence. An accurate and fast algorithm to identify the geometric relationship of piping materials is presented. To improve the calculation efficiency, the interference is gradually examined from simplified to complicated shapes. It is demonstrated that the calculation efficiency is significantly improved with successive geometric operations such as back-face culling and use of bounding boxes. After the final installation sequence is determined, the entire installation process is visualized in a virtual reality environment so that the process can be rendered and understood for a full-scale model.

Design criteria of Hazen-Williams C value of water pipe system (상수관로의 유속계수 설계기준)

  • Kwon, Hyuk Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.6
    • /
    • pp.659-666
    • /
    • 2015
  • In this study, Hazen-Williams C value of pipes in wide waterworks system was estimated and statistically analyzed. Hazen-Williams C value of water pipe was predicted after 20 years of service period. From the results, it was found that C value of water pipe for treated water maintained higher value of 110 after 20 years of installation. Furthermore, it was found that velocity coefficients of steel pipe for less than and more than 20 years of installation were 117.7 and 109.3, respectively. C value of ductile iron pipe for less than and more than 20 years of installation were 118.1 and 114.2, respectively. In this study, it was also found that small value of C is used in the design of water pipe system. Therefore, excessively bigger size of pipe can be determined in the design of water pipe system. From the results of present study, optimum value of C can be used to avoid the oversized design of water pipe system.

Characteristics of Driving Efficiency and Bearing Capacity for Long Steel Pipe Pile Method without Welding (무용접 장대강관말뚝 공법의 항타 및 지지력 특성)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.235-241
    • /
    • 2000
  • The existing methods for installation of long steel pipe pile have some uneconomical problems such as increase of installation cost and period due to the welding of two piles and removal of soil plug, and decrease of driving efficiency due to the increase of driving resistance resulting from time effect during the welding of piles and removal of soil plug, etc. Thus, in this study, new installation method for long steel pipe pile is suggested to solve the existing problems, and calibration chamber tests were performed to investigate both driving and economical efficiency for the suggested method. The test results showed that the new method increased bearing capacity, and decreased the installation cost and period for long steel pipe piles compared with existing methods.

  • PDF

A Statistical Methodology for Evaluating the Residual Life of Water Mains (상수관로의 잔존수명 평가를 위한 통계적 방법론)

  • Park, Suwan;Choi, Chang Log;Kim, Jeong Hyun;Bae, Cheol Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.3
    • /
    • pp.305-313
    • /
    • 2009
  • This paper provides a method for evaluating a residual life of water mains using a proportional hazard model(PHM). The survival time of individual pipe is defined as the elapsed time since installation until a break rate of individual pipe exceeds the Threshold Break Rate. A break rate of an individual pipe is estimated by using the General Pipe Break Model(GPBM). In order to use the GPBM effectively, improvement of the GPBM is presented in this paper by utilizing additional break data that is the cumulative number of pipe break of 0 for the time of installation and adjusting a value of weighting factor(WF). The residual lives and hazard ratios of the case study pipes of which the cumulative number of pipe breaks is more than one is estimated by using the estimated survival function. It is found that the average residual lives of the steel and cast iron pipes are about 25.1 and 21 years, respectively. The hazard rate of the cast iron pipes is found to be higher than the steel pipes until 20 years since installation. However, the hazard rate of the cast iron pipes become lower than the hazard rates of the steel pipes after 20 years since installation.

End shape and rotation effect on steel pipe pile installation effort and bearing resistance

  • Saleem, Muhammad A.;Malik, Adnan A.;Kuwano, Jiro
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.523-533
    • /
    • 2020
  • The current study focuses on the effect of the end shape of steel pipe piles on installation effort and bearing resistance using the pressing method of installation under dense ground conditions. The effect of pile rotation on the installation effort and bearing resistance is also investigated. The model steel piles with a flat end, cone end and cutting-edge end were used in this study. The test results indicated that cone end pile with the pressing method of installation required the least installation effort (load) and showed higher ultimate resistance than flat and cutting-edge end piles. However, pressing and rotation during cutting-edge end pile installation considerably reduces the installation effort (load and torque) if pile penetration in one rotation equal to the cutting-edge depth. Inclusion of rotation during pile installation reduces the ultimate bearing resistance. However, if penetration of the cutting-edge end pile equal to the cutting-edge depth in one rotation, the reduction in ultimate resistance can be minimized. In comparing the cone and cutting-edge end piles installed with pressing and rotation, the least installation effort is observed in the cutting-edge end pile installed with penetration rate equal to the cutting-edge depth per rotation.

Advanced Offshore Pipelaying Analysis techniques Part 2 : Laybarge Methods (해저 파이프라인 가설 분석 기술)

  • Choe, Han-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.7-19
    • /
    • 1995
  • Various laybarge methods for offshore pipeline installation are introduced. Pipe stresses and strains during the installation are discussed with linear and nonlinear analysis methods. Several operational modes of offshore pipeline installation are described. Computer modelling techniques of the pipeline installation analyses are suggested.

  • PDF

A Study on the Absorption of Thermal Stress on the Underground piping for the District heating (지역난방용 매설배관의 열응력 흡수에 관한 연구)

  • Kong Jae Hyang;Sin Byung Kug
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.81-88
    • /
    • 2005
  • There have been many studies on generation equipment and plant piping, but there is no significant study result on the heat transportation pipe. As such, this study established basic theory on the compensated method among buried pipe for regional heating, and further obtained the following results by applying the conditions of AGFW and NCHPP respectively in calculation of friction and maximum installation distance for the buried pipe. Friction coefficient according to the types and physical properties of soil, friction and maximum installation distance were compared to set the application value of friction coefficient according to the location of works. Calculation formula of clay load to be applied for calculation of friction was introduced to the formula of AGFW and the formula of NCHPP that has been used in Nowon district since 1997 to determine the difference and applicability. $120^{\circ}C$ and $95^{\circ}C$ were applied in temperature difference for expansion volume to compare the arm length at the curve pipe so thai it can be reflected in the design in the future. Maximum installation distance according to thickness of pipe was compared to present the necessity of unified specification so that same kinds of pipe materials can be used for same kinds of works.