• Title/Summary/Keyword: Pipe Flow Analysis

Search Result 641, Processing Time 0.025 seconds

Round Robin Test for Reliability Evaluation of Ultrasonic Thickness Measurement Results in Nuclear Power Plant Pipelines (원전감육배관 UT 두께측정 결과의 신뢰도 평가를 위한 다자비교시험)

  • Lee, Seung-Joon;Yi, Won-Geun;Lee, Joon-Hyun;Lee, Sung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1702-1707
    • /
    • 2007
  • The reduction of pipe-thickness induced by flow accelerated corrosion (FAC) is one of the most serious problems on the maintenance of piping system in nuclear power plants (NNP). If the thickness of a pipe component is reduced below the critical level, it cannot sustain pressure and consequently results in leakage or rupture. For this reason, wall thinning by FAC has been inspected in secondary side piping systems in NPPs. In this research Round Robin Test (RRT) was conducted to verify confidence of wall thinning measurement system in NPP. 12 inspectors from 3 companies participated and 23 specimens were used according to standard practice in RRT. The gage R&R analysis was introduced in regard to repeatability and reproducibility that are affected to measurement system errors. Confidence intervals of thickness measurement system were obtained.

  • PDF

Determination Algorithm of Hydraulic Parameters in Water Distribution System (상수관망의 수리학적 지배인자 결정기법)

  • Park, Jae-Hong;Kim, Sang-Hyun;Han, Kun-Yeun
    • Water for future
    • /
    • v.29 no.6
    • /
    • pp.217-224
    • /
    • 1996
  • In this paper, the evaluation of diameter, global velocity, global roughness coefficients of the water distribution pipes are examined by using pressure and flowrate measurements in selected points of the network. The selected pipe network parameters are determined through reformulation of the continuity and energy equation. Additional energy equation is considered to analyze the coefficient matrix. The resulting nonlinear equations are solved by using Newton Raphson method. Three computer models with complex pipe system are used to demonstrate these procedures. The computed results of hydraulic parameters show good agreements with KYPIPE2 flow analysis model.

  • PDF

PRELIMINARY DESIGN AND ECONOMICS CONSIDERATION OF P-NEW-CITY DISTRICT HEATING MAIN PIPES AND PUMPIG STATION (Flowra를 이용한 P신도시 지역난방 주 배관망 및 펌프장 예비 설계 및 경제성 검토)

  • Kim, Jin-Kwon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.127-128
    • /
    • 2010
  • As P-new-city is planned and constructed, district eating utilizing an existing near-by power plant's waste heat is considered as an economic and environment friendly way of providing heating to the new city. Many pipeline diameters and pumping station location and capacity were assumed, investigated and optimized, to satisfy the customers' heat demand considering common district heating pipe-network design and construction practice, and also and construction, pumping station land price and construction and the pumping energy cost during lifetime of DH systems.

  • PDF

Numerical Analysis of Thermal Stratification and Turbulence Penetration into Leaking Flow in a Circular Branch Piping (원형 T분기배관 내 누설유동의 열성층화와 난류침투에 관한 전산해석적 연구)

  • Han, Seong-Min;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1833-1838
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system(ECCS) is furnished at reactor coolant system(RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can be occurred due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack(TFC) accident. In the present study, when the turbulence penetration occurs in the branch piping, the maximum temperature differences of fluid at the pipe cross-sections of the T-branch with thermal stratification are examine

  • PDF

Numerical Analysis of Recirculating Flow of a Confined Jet in a Circular Pipe (管內噴流 에서의 循環流 에 대한 수치해석)

  • 이충구;서정윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.64-70
    • /
    • 1985
  • Fully Reynolds Stress model is applied to predict recirculation pattern, velocity and Reynolds shear stress distributions in a circular jet coaxially confined in a round pipe. It is found that the generation of velocity region depends on Curtet number(Ct). It is also found that the Reynolds shear stress and velocity distributions in the inital jet region depend strongly on the Curtet number up to about X/D = 2.0 but they are almost independent of the Curtet number further downstream.

A Study on the Rheology Characteristics of Magnetic Fluids in a Circular Pipe (원관내 자성유체의 Rheology 특성에 관한 연구)

  • Jeon, Eon-Chan;Park, Joung-Woo;Kim, Tae-Ho;Kim, Soo-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.38-44
    • /
    • 2008
  • In the present paper, we theoretically analyze the flow of magnetic fluids in a circular pipe with a vertical magnetic field and investigate the magnetic response by the external magnetic field. Theoretical study through the governing equation derived by Siliomis is carried out with numerical analysis by the Gauss Elimination Method. Using polar and magnetic effect parameters, theoretical equations and distributions for the velocity, apparent viscosity as the magnetic response are shown. Especially, in the region of strong magnetic field the specific property is appeared by finding a critical magnetic effect parameter for a polar effect parameter.

  • PDF

Computational and Experimental Analysis of Exhaust Pipe Pressure Distributions in a Single Cylinder Gasoline Engine (단기통 가솔린 엔진 배기단의 압력 변화에 관한 실험 및 수치해석)

  • Jeong, H.M.;Choi, S.C.;Sim, K.J.;Kim, S.H.;Koh, D.K.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.5-10
    • /
    • 2004
  • 본 연구는 단기통 4행정 기관의 배기단의 형상에 따른 실험과 수치해석이 소개되었다. 흡 배기 밸브가 작동하고 있고, 주요한 배기단의 변수로는 배기단 직경이 적용이 되었다. 실험결과로는 배기단의 직경에 따라 배기 압력은 많은 영향을 받았는 것으로 나타났다. 배기단의 직경이 감소하였을때, 배기압력파의 진폭과 파수가 증가되었다. 배기단의 직경이 증가 하였을 때, 배기압력파의 진폭이 감소하였다. 직경이 22mm 일 때의 소음의 주파수 분석이 16mm와 28mm 보다 진폭이 작게 나타났다.

  • PDF

Frequency Response Characteristics of Hydraulic Pipeline Systems (유압관로계의 주파수 응답특성)

  • 김도태;홍성태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.38-44
    • /
    • 2000
  • An oil hydraulic line is modeled in which a pipe or two pipes of different size connected in series and terminated in a chamber, i.e. a composite line system. The frequency response characteristics are investigated analytically and experimentally. The theoretical analysis is base on unsteady laminar flow of a viscous compressible fluid. It is generally difficult to obtain exactly the frequency equation of these lines system and its solutions in consideration of viscosity of hydraulic fluid, because the diameters of two pipes and length are different. The effect of the position where the cross-sectional area of changes suddenly, the inner radius of pipe and the volume of terminal chamber on the frequency characteristics of this composite line system are also described.

  • PDF

Simulation of Heat Supply Control of Continuous Heating System of Multistoried Apartment in Consideration of Radiation Heat Transfer (복사열전달을 고려한 고층아파트 연속난방 열공급제어 시뮬레이션)

  • Choi, Y.D.;Hong, J.K.;Yoon, J.H.;Lee, N.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.78-92
    • /
    • 1994
  • Thermal performance of pipe network of continuous heating system controlled by thermostat and flow control valve was simulated in consideration of radiation heat transfer and solved by linear analysis method. Thermal performance of real apartment building with radiant floor heating system was simulated by equivalence heat resistance-capacity method. This method enables to simulate the unsteady variation of temperature or each element of building. Heat transfer characteristics of each element were also investigated.

  • PDF

SURGE LINE STRESS DUE TO THERMAL STRATIFICATION

  • Jhung, Myung-Jo;Choi, Young-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.239-250
    • /
    • 2008
  • If there is a water flow with a range of temperature inside a pipe, the wanner water tends to float on top of the cooler water because it is lighter, resulting in the upper portion of the pipe being hotter than the lower portion. Under these conditions, such thermal stratification can play an important role in the aging of nuclear power plant piping because of the stress caused by the temperature difference and the cyclic temperature changes. This stress can limit the lifetime of the piping, even leading to penetrating cracks. Investigated in this study is the effect of thermal stratification on the structural integrity of the pressurizer surge line, which is reported to be one of the pipes most severely affected. Finite element models of the surge line are developed using several element types available in a general purpose structural analysis program and stress analyses are performed to determine the response characteristics for the various types of top-to-bottom temperature differentials due to thermal stratification. Fatigue analyses are also performed and an allowable environmental correction factor is suggested.