• 제목/요약/키워드: Pipe Cooling

검색결과 413건 처리시간 0.032초

선체냉각을 위한 해수분사노즐의 산포특성에 관한 실험 연구 (An Experimental Study on the Dispersion Characteristics of Seawater Injection Nozzle for Hull Cooling)

  • 윤석태;정호석;조용진
    • 한국군사과학기술학회지
    • /
    • 제20권6호
    • /
    • pp.767-773
    • /
    • 2017
  • Infrared stealth is an important technology for naval ships. This technology helps improve the anti-detection performance and survivability of naval ships. In general, the infrared signature of naval ships are categorized into internal and external heat source. External signature are generated by ship surface heating by solar flux as well as the complicated heat transfer process with the surrounding weather condition. Modern naval ships are equipped with seawater injection nozzles on the outside for nuclear, biological and, chemical, and these nozzles are used to control external signature. Wide nozzle placement intervals and insufficient injection pressure, however, have reduced seawater dispersion area. To address this problem, nozzle installation standards must be established. In this study, an actual-scale experimental system was implemented to provide the evidence for nozzle installation standards in order to reduce the infrared signature of naval ships. In addition, the environmental conditions of the experiment were set up through computational fluid dynamics considering the ocean climate data and naval ship management conditions of South Korea. The dispersion distance was measured using a high-resolution thermography system. The flow rate, pipe pressure, and dispersion distance were analyzed, and the evidence for the installation of seawater injection nozzles and operation performance standards was suggested.

가스 냉온수기용 STS 304 배관 용접부의 부식특성에 관한 연구 (The Study on the Corrosion Characteristics of STS 304 Pipeline Steel Weldment for Gas Cooling & Heating System)

  • 김환식;임우조
    • 한국가스학회지
    • /
    • 제11권2호통권35호
    • /
    • pp.31-36
    • /
    • 2007
  • 가스 냉온수기용 STS 304 배관 용접부의 부식특성을 연구하기 위하여, 0.5M $H_2SO_4+0.01M$ KSCN 수용액 중에서 전기화학적 분극시험, 금속조직시험 과 경도시험을 실시하여 STS 304배관 용접부의 양극분극거동, 인가전위에 따른 부식거동, 용접부의 금속조직 및 경도거동를 고찰하였다. 다음과 같은 결론을 얻었다. 1) 임계양극전류밀도는 모재보다 용접열영향부에서 많이 배류되고, 기본부동태전위는 모재보다 용접열영향부에서 더 높게 된다. 2) 부동태전류밀도는 모재보다 용접열영향부에서 더 많이 배류되고, 부동태영역은 용접열영향부보다 모재가 더 크게 된다. 3)인가전압에 의한 용접열영향부의 전류밀도는 모재의 전류밀도보다 더 많이 배류된다.

  • PDF

바이오매스 합성가스 적용을 위한 LPG 엔진발전기 개조 및 성능평가 (Modification of an LPG Engine Generator for Biomass Syngas Application)

  • 엘리에젤 하비네자;홍성구
    • 한국농공학회논문집
    • /
    • 제64권5호
    • /
    • pp.9-16
    • /
    • 2022
  • Syngas, also known as synthesis gas, synthetic gas, or producer gas, is a combustible gas mixture generated when organic material (biomass) is heated in a gasifier with a limited airflow at a high temperature and elevated pressure. The present research was aimed at modifying the existing LPG engine generator for fully operated syngas. During this study, the designed gasifier-powered woodchip biomass was used for syngas production to generate power. A 6.0 kW LPG engine generator was modified and tested for operation on syngas. In the experiments, syngas and LPG fuels were tested as test fuels. For syngas production, 3 kg of dry woodchips were fed and burnt into the designed downdraft gasifier. The gasifier was connected to a blower coupled with a slider to help the air supply and control the ignition. The convection cooling system was connected to the syngas flow pipe for cooling the hot produce gas and filtering the impurities. For engine modification, a customized T-shaped flexible air/fuel mixture control device was designed for adjusting the correct stoichiometric air-fuel ratio ranging between 1:1.1 and 1.3 to match the combustion needs of the engine. The composition of produced syngas was analyzed using a gas analyzer and its composition was; 13~15 %, 10.2~13 %, 4.1~4.5 %, and 11.9~14.6 % for CO, H2, CH4, and CO2 respectively with a heating value range of 4.12~5.01 MJ/Nm3. The maximum peak power output generated from syngas and LPG was recorded using a clamp-on power meter and found to be 3,689 watts and 5,001 watts, respectively. The results found from the experiment show that the LPG engine generator operated on syngas can be adopted with a de-ration rate of 73.78 % compared to its regular operating fuel.

Copper Filter Dryer 품질보증을 위한 결함 검출 및 원인 분석 (Defect Detection and Cause Analysis for Copper Filter Dryer Quality Assurance)

  • 오석민;박진제;다어반권;장병호;김흥재;김창순
    • 한국산업정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.107-116
    • /
    • 2024
  • Copper Filter Dryer(CFD)는 냉동 및 냉방 시스템에서 냉매의 순환 시 불순물을 제거하여 깨끗한 냉매를 유지하는 역할을 하며, CFD의 결함은 냉동 및 냉방 시스템의 누수, 수명 저하 등 제품의 결함으로 이어질 수 있어 품질보증이 필수적이다. 기존에는 품질 검사 단계에서 작업자가 검사하고 결함을 판단하는 방법이 주로 사용되었으나, 이러한 방법은 주관적으로 판단하기 때문에 정확하지 못하다. 본 논문에서는 CFD 축관 및 용접 공정 과정에서 발생하는 결함을 검출하고 기존의 품질 검사를 대체하기 위해 YOLOv7 객체 감지 알고리즘을 사용하여 결함을 검출했고, F1-Score 0.954, 0.895의 검출 성능을 확인하였다. 또한, 결함 이미지의 Timestamp에 해당하는 센서 데이터 분석을 통해 용접 과정 중 발생하는 결함의 원인을 분석하였다. 본 논문은 CFD 공정 중 발생하는 결함을 검출하고 원인을 분석함으로써 제조 품질보증과 개선 방안을 제시한다.

설비공학 분야의 최근 연구 동향 : 2010년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2010)

  • 한화택;이대영;김서영;최종민;김수민;권영철;백용규
    • 설비공학논문집
    • /
    • 제23권6호
    • /
    • pp.449-469
    • /
    • 2011
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering during 2010. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery, and new and renewable energy. Various topics were presented in the field of general thermal and fluid flow. Research issues mainly focused on the thermal reliability of axial fan and compressor in the field of fluid machinery. Studies on the design of ground source heat pump systems and solar chemical reactors were executed in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (3) Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and CO2 were studied. Performance improvement of refrigeration systems are tried applying various ideas of refrigerant subcooling, dual evaporator with hot gas bypass control and feedforward control. The hybrid solar systems combining the solar collection devices with absorption chillers or compression heat pumps are simulated and studied experimentally as well to improve the understanding and the feasibility for actual applications. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. Various studies on heating and cooling systems, HVAC facilities, indoor air environments and energy resources were carried to improve the maintenance and management of building service equipments. In the field of heating and cooling systems, papers on a transformer cooling system, a combined heat and power, a slab thermal storage and a heat pump were reported. In the field of HVAC facilities, papers on a cooling load, an ondol and a drying were presented. Also, studies on HVAC systems using unutilized indoor air environments and energy resources such as air curtains, bioviolence, cleanrooms, ventilation, district heating, landfill gas were studied. (5) In the field of architectural environment and energy, studies of various purposes were conducted such as indoor environment, building energy, renewable energy and green building. In particular, renewable energy and building energy-related researches have mainly been studied reflecting the global interest. In addition, many researches which related the domestic green building certification of school building were performed to improve the indoor environment of school.

라디에이터 팬의 재질에 따른 열 내구성 해석 (Thermal Durability Analysis Due to Material of Radiator Fan)

  • 한문식;조재웅
    • 한국생산제조학회지
    • /
    • 제22권5호
    • /
    • pp.789-794
    • /
    • 2013
  • In this study, the temperature, heat emission per unit time, and thermal stress or deformation of a radiator fan made of polyethylene or aluminum are analyzed for investigating its strength durability. Heat transfer in the case of the aluminum radiator fan is better than that in the case of the polyethylene radiator fan. Further, heat emission in the case of the aluminum fan is poorer than that in the case of the polyethylene fan. Moreover, because the thermal deformation of aluminum is much smaller than that of polyethylene, the thermal durability of the aluminum fan is better than that of the polyethylene fan. In an open space in front of the radiator and the closed space of the engine behind it, the thermal cooling effect of the polyethylene fan is better than that of the aluminum fan. Further, since polyethylene is lighter in weight than aluminum, polyethylene, as a nonmetallic plastic, is more suitable as a material of an automotive radiator. However, because of the higher strength durability of the aluminum fan, it is better than the polyethylene fan under high-temperature conditions or in the case of a complex pipe.

CF8M과 SA508 용접재의 열화거동과 기계적특성 평가 (Evaluation of Mechanical Properties with Thermal Aging in CF8M/SA508 Welds)

  • 우승완;최영환;권재도
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.1968-1973
    • /
    • 2004
  • Structural degradations are often experienced on the components of nuclear power plants in reactor pressure vessels (RPV) and steam generators (SG) when these components are exposed to high temperature and high pressure for a long period of time. Such conditions result in the change of microstructures and of mechanical properties of materials, which requires an evaluation of the safeguards related to structural integrity. In a primary reactor cooling system (RCS), a dissimilar weld zone exists between cast stainless steel (CF8M) in a pipe and low-alloy steel (SA508 cl.3) in a nozzle. Thermal aging is observed in CF8M as the RCS is exposed for a long period of time under the operating temperature between 290 and 33$0^{\circ}C$. Under the same conditions, it is well known that degradation is not observed in low alloy steel. An investigation of the effect of thermal aging on the various mechanical properties of the dissimilar weld zone is required. The purpose of the present investigation is to find the effect of thermal aging on the dissimilar weld zone. The specimens are prepared by an artificially accelerated aging technique maintained for various times at 43$0^{\circ}C$, respectively. Then, The various mechanical test for the dissimilar welds are performed.

이젝터를 이용한 다관식 열교환기 파울링 자동제거장치의 구동특성에 관한 실험적 연구 (An Experimental Study of Operating Characteristics on Fouling Auto Removal Apparatus of Multi Pass Type Heat Exchanger using Ejector)

  • 김재돌
    • 동력기계공학회지
    • /
    • 제13권6호
    • /
    • pp.63-69
    • /
    • 2009
  • The experiment was performed to check operating characteristics of fouling auto removal apparatus for multi pass type heat exchanger using ejector. The results showed as following. The ejector suction flow rate increased with the head of operating pump of ejector. Proper suction flow rate showed $7.2{\sim}10.2m^3/h$ for ball collection in case of pump head 35~50m. The head of ejector outlet pipe is below 4.1m in case of 40m, the head of operating pump of ejector to confirm ejector suction flow rate 8.4m3/h. Lattice space of ball separator is allowed 6~10.3mm in ranges of ball diameter are 15~25mm and when mass flow of cooling water is 3.0m/sec. Average of passing time of balls is 1.2~2.8sec depend on the velocity of flow and the size of balls.

  • PDF

원자로 내 핵연료조사시험용 압력용기조립체 설계 (Design of Vessel Assembly for Fuel Irradiation Test in Reactor)

  • 박국남;이종민;지대영;박수기;이정영;김영진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.383-387
    • /
    • 2004
  • The Fuel Test Loop (FTL) consists of In-Pile Test Section (IPS) and Out-of-Pile System (OPS). The test condition in IPS such as pressure, temperature and quality of the main cooling water, can be controlled by the OPS. The FTL has been developed to be able to irradiate three pins to the core irradiation hole (IR1 hole) by considering for its utility and user's irradiation requirement. The IPS vessel assembly (IVA) consists of IPS head, outer pressure vessel, inner pressure vessel, inner assembly and test fuel carrier. The IVA is approximately 5.6 m long and fits within a 74 mm in diameter envelope over the full height of the chimney. Above the top of the chimney, the head of the IPS is enlarged to allow the closure flanges and pipe work connections. IVA was designed to test the CANDU and PWR nuclear fuel pin together. Specially, wished to minimize interference by nuclear fuel change in design and synthesize these items and shape design for IVA.

  • PDF

해양 구조물의 Carbon Steel Process piping용 FC 용접부의 저온 충격인성에 관한 연구 (A Study on the Low Temperature Impact toughness of Flux Cored Arc Weldmetal in offshore Carbon Steel Process Piping)

  • 지춘호;최준태;김대순
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 추계학술발표대회 개요집
    • /
    • pp.141-143
    • /
    • 2004
  • The experimental simulation welds using 3kinds of 70ksi titania based flux-cored consumables were performed on 24 inches 24.6-thick API 5L Gr. B pipe with relatively high current, over 300A and four different Post Weld Heat Treaonent(PWHT) conditions at $625^{circ}C$ were applied to each consumable test coupon. It is well known that, in common welding processes such as Submerged Arc Welding(SAW) or Flux Cored A.c Welding(FCAW), the cooling rates in as-deposited weld bead are normally so ,apid that actual precipitation of microalloy carbonitrides, Nb(C,N) or V(C,N) is not likely to occur in the as-welded weld metal, however, during stress relief or PWHT the operation of precipitation can reduce the impact properties of the weld metal. As results of mechanical testing, it is concluded that PWHT at $625^{circ}C$ is detrimental to weld metal impact toughness of Ti-B type flux- cored (FC) welding consumables regardless of the amount of Nb and V, but two optima were exhibited, one at 800ppm Ti, 75ppm 5 and another 360ppm Ti, 54ppm 5.

  • PDF