• 제목/요약/키워드: Pipe Cooling

검색결과 413건 처리시간 0.036초

헬리컬 코일관 내 초임계 $CO_2$의 압력강하 특성 (Pressure Drop Characteristics of Supercritical $CO_2$ in a Helically Coiled Tube)

  • 유태근;김대희;노건상;구학근;오후규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.216-221
    • /
    • 2005
  • The heat transfer coefficient and pressure drop during gas cooling process of carbon dioxide in a helically coiled tube were investigated experimentally. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section is a double pipe type heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. It was made of a copper tube with the inner diameter of 4.85 [mm], the outer diameter of 6.35 [mm] and length of 10000 [mm]. The refrigerant mass fluxes were 200${\sim}$600 [kg/$m^2$s] and the average pressure varied from 7.5 [MPa] to 10.0 [MPa]. The main results were summarized as follows: The heat transfer coefficient of supercritical $CO_2$ increases, as the cooling pressure of gas cooler decreases. And the heat transfer coefficient increases with the increase of the refrigerant mass flux. The pressure drop decreases in increase of the gas cooler pressure and increases with increase the refrigerant mass flux.

  • PDF

열원 냉각용 루프 써모사이폰의 작동 특성 (Performance Characteristics of a Loop Thermosyphon for Heat Source Cooling)

  • 최두성;송태호
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1475-1483
    • /
    • 2004
  • Loop thermosyphon(LTS) has many good characteristics such as low thermal resistance, no power consumption, noiseless operation and small size. To investigate the overall performance of LTS, we have performed various experiments varying three parameters: input power of the heater, working fluid(water, ethanol, FC3283) and filling ratio of the working fluid. At a combination of these parameters, temperature measurements are made at many locations of the LTS. The temperature difference between the evaporator and the condenser is used to obtain the thermal resistance. In addition, flow visualization using a high speed camera is carried out. The thermal resistance is not constant. It is lower at higher input power, which is one of the distinct merits of LTS. Flow instabilities are frequently observed when changing the working fluid, the input power and the filling ratio. The results show that the LTS can be readily put into practical use. Future practical application in electronic cooling is recommended.

히트 파이프를 이용한 열경화성 나노임프린트 장비용 열판의 온도 균일도 향상 (Improvement of Temperature Uniformity in a Hot Plate for Thermal Nanoimprint Lithography by Installing Heat Pipes)

  • 박규진;양진오;이재종;곽호상
    • 반도체디스플레이기술학회지
    • /
    • 제15권2호
    • /
    • pp.74-80
    • /
    • 2016
  • This study presents a thermal device specially designed for thermal nanoimprint lithography equipments, which requires the capability of rapid heating and cooling, high temperature uniformity and the material strength to endure high stamping pressure. The proposal to meet these requirements is a planar-type hot plate extensible to a large area, in which long circular cartridge heaters and heat pipes are installed inside in parallel. The heat pipes are connected to the outside water cooling chamber. A hot plate made of stainless steel is fabricated with a dimension $240mm{\times}240mm{\times}20mm$. Laboratory experiments are conducted to examine the thermal performance of the hot plate. The results illustrate that the employment of heat pipes leads to a notable enhancement of temperature uniformity in the device and provides an efficient heat delivery from the hot plate to outside. It is verified that the suggested hot plate could be a feasible thermal tool for thermal nanoimprint lithography, satisfying the major design requirements.

가속냉각처리한 API-X70강의 미세조직과 기계적 특성에 미치는 구상화 열처리시간의 영향 (Effect of Spherodizing Heat-treatment Time on Microstructure and Mechanical Property in Accelerated Cooling-treated API-X70 Steel)

  • 배동수
    • 한국산업융합학회 논문집
    • /
    • 제24권5호
    • /
    • pp.525-530
    • /
    • 2021
  • The purpose of this study was to investigate the effect of spherodizing heat treatment holding time on the microstructure and mechanical properties of the accelerated cooling-treated API X70 steel, which is mainly used as a structural material for line pipe steel for natural gas pipes. The accelerated cooling-treated API X70 steel was spherodizing treated at 700℃ for 12~48 h. The microstructure was observed using an OM and a FEG-SEM, and mechanical properties were obtained by tensile test. The microstructure of the API X70 steel was banded in the hot rolling direction, and the polygonal ferrite(PF) adjacent to pearlite(P) has mainly a fine size, and coarse PF and fine acicular ferrite were formed in the middle of P and P. As the spherodizing treatment time increased, the number of carbide particles decreased and its distribution interval increased, and the ferrite grain size was coarsened. The tensile strength decreased and the ductility increased with spherodizing treatment time, and the yield point elongation was disappeared in a stress-strain curve after the spherodizing treatment.

Thermal study of the emergency draining tank of molten salt reactor

  • C. Peniguel
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.793-802
    • /
    • 2024
  • In the framework of the European project SAMOSAFER, this numerical study focuses on some thermal aspects of the Emergency Draining Tank (EDT) located underneath the core of a Molten Salt Reactor. In case of an emergency, this tank passively receives the liquid fuel salt and is designed to ensure a subcritical state. An important requirement is that the fuel does not overheat to maintain the EDT Hastelloy container integrity. The present EDT is based upon a group of hexagonal cooling assemblies arranged in a hexagonal grid and cooled down thanks to conduction through the inert salt layer up to an air flow in charge of removing the heat. This numerical thermal study relies on a conjugated heat transfer analysis coupling a Finite Element solid thermal code (SYRTHES) and two instances of a Finite Volume CFD codes (Code_Saturne). Calculations on an initial design suggest that a simple center airpipe flow is likely to not sufficiently cool the device. Alternative solutions have been evaluated. Introduction of fins to enhance the heat transfer do not bring a noticeable improvement regarding maximum temperature reached. However, a solution in which the central pipe air flow is replaced by several cooling channels located closer to the fuel is investigated and suggests a better cooling.

형산큰다리 교각기초 콘크리트의 수화열 해석 및 적용 (Analysis of Heat of Hydration for Hyungsan Bridge)

  • 안동근;김명모
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.715-722
    • /
    • 2001
  • The main purpose of this study is to evaluate early age thermal stresses and to estimate the risk of thermal cracking in the footings of Hyungsan bridge. In this study, stress analyses are performed for several construction stages using the computation of temperature distributions. The stress analysis results show that, not using the embedded pipe cooling, placing the concrete at once for each footings may cause sever thermal cracking. So, the structures should be constructed with one horizontal construction joint. Then the height of each lifts were determined to be 1.50 meters. Using various time intervals between lifts, temperature and stress.

  • PDF

냉수배관에 의한 온실의 제습 및 증발냉각효율 증대효과 (Dehumidification and Increment of Efficiency of Evaporative Cooling in Greenhouse with Water Pipe)

  • 김문기;남상운;윤남규
    • 한국생물환경조절학회:학술대회논문집
    • /
    • 한국생물환경조절학회 1995년도 특강 및 학술논문발표요지
    • /
    • pp.103-106
    • /
    • 1995
  • 최근 시설재배 면적이 급증하고 있는 것에 부응하여 시설을 이용한 작물의 주년안정생산에 관한 연구가 활성화되고 있다. 그러나 여름철의 고온극복과 냉방에 관한 연구는 아직까지도 많은 어려움을 겪고 있다. 우리나라와 같이 사계절이 뚜렷한 기후여건에서는 겨울철의 난방 및 보온에 못지 않게 여름철의 냉방 및 고온극복 대책이 주년안정생산에 있어서 빼놓을 수 없는 중요한 과제가 아닐 수 없다. (중략)

  • PDF

파이프쿨링에 의한 Double T-beam 교량의 온도균열제어에 관한 연구 (Control of Thermal Cracking by Pipe-Cooling System in Double T-Beam Bridge)

  • 정철헌;홍민기;전세진;박세진
    • 콘크리트학회지
    • /
    • 제14권1호
    • /
    • pp.53-60
    • /
    • 2002
  • 매스 콘크리트 구조물에서는 콘크리트 타설 후 시멘트의 수화열로 인한 온도응력에 의해서 온도균열의 발생 가능성이 매우 높다. 따라서, 매스 콘크리트 시공시, 온도균열을 구조물의 내구성 관점에서 최대한 억제시킬 필요가 있다. 최근에는 국내에서도 단위시멘트량이 많은 배합을 이용하는 고강도 콘크리트 구조물의 시공이 증가되고 있다. 이와 같은 매스 콘크리트 구조물은 단위시멘트량이 많기 때문에 부재내 수화열에 의한 온도의 상승 속도가 빠르기 때문에 시공에 앞서 사전에 설계, 재료 및 시공 측면에서 온도균열 제어 대책을 검토할 필요가 있다.(중략)