• Title/Summary/Keyword: Pipe Cooling

Search Result 413, Processing Time 0.027 seconds

Development of Dust Recycling System and Dust Cleaner in Pipe during Vitrification of Simulated Non-Radioactive Waste (모의 비방사성폐기물의 유리화시 발생 분진의 재순환처리장치 및 배관 내 침적분진에 의한 막힘 방지용 제진장치의 개발)

  • Choi Jong-Seo;You Young-Hwan;Park Seung-Chul;Choi Seok-Mo;Hwang Tae-Won;Shin Sang-Woon
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.110-120
    • /
    • 2005
  • For utilizing vitrification to treat low and intermediate level waste, industrial pilot plant was designed and constructed in October 1999 at Daejon, Korea through the joint research program among NETEC, MOBIS and SGN. More than 70 tests were performed on simulated IER, DAW etc. including key nuclide surrogate(Cs, Co); this plant has been shown to vitrify the target waste effectively and safely, however, some dust are generated from the HTF(High Temperature Filter) as a secondary waste. In case of long term operation, it is also concerned that pipe plugging can be occurred due to deposited dust in cooling pipe namely, connecting pipe between CCM(Cold Crucible Melter) and HTF. In this regard, we have developed the special complementary system of the off-gas treatment system to recycle the dust from HTF to CCM and to remove the interior dust of cooling pipe. Main concept of the dust recycling is to feed the dust to the CCM as a slurry state; this system is regarded as of an important position in the viewpoint of volume reduction, waste disposal cost and glass melt control in CCM. The role of DRS(Dust Recycling System) is to recycle the major glass components and key nuclides; this system is served to lower glass viscosity and increase waste solubility by recycling B, Na, Li components into glass melt and also to re-entrain and incorporate into glass melt like Cs, Co. Therefore dust recycling is helpful to control the molten glass; it is unnecessary to consider a separate dust treatment system like a cementation equipment. The effects of Dust Cleaner are to prevent the pipe plugging due to dust and to treat the deposited dust by raking the dust into CCM. During the pilot vitrification test, overall performance assessment was successfully performed; DRS and Dust Cleaner are found to be useful and effective for recycling the dust from HTF and also removing the dust in cooling pipe. The obtained operational data and operational experiences will be used as a basis of the commercial facility.

  • PDF

Experiment and Analysis of the Residual Stress for Multipass Weld Pipes by the Neutron Diffraction Method

  • Kim S. H.;Lee J. H.
    • International Journal of Korean Welding Society
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • Multipass welds of 316L stainless steel have been widely employed to the pipes of Liquid Metal Reactors. Owing to localized heating and a subsequent rapid cooling by the welding process, residual stress arises in the weld of the pipe. In this study, the residual stresses in the 316L stainless steel pipe welds were calculated by the finite element method using the ANSYS code. Also, the residual stresses both on the surface and in the interior of the thickness were measured by the HRPD(High Resolution Powder Diffractometer) instrumented in the HANARO Reactor. The experimental data and the calculated results were compared and the characteristics of the distribution of the residual stress were discussed.

  • PDF

Research of Flow Electrification Phenomena of the used Environment-Friendly Vegetable Insulating Oils (친환경 식물성절연유의 유동대전현상 연구)

  • Choi, Sun-Ho;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.580-584
    • /
    • 2012
  • The insulating oils perform a cooling and insulation action in electric power transformer. The mineral oil has immanent fire dangerousness and environmental contamination problem. Vegetable insulating oil has higher ignition point, flash point and more excellent biodegradability than conventional mineral oil. In a real oil-filled transformers, some of the power is dissipated in the form of heat. And transformer require the heat to be removed from the winding and insulator by forced convection of the insulating oil. The flow electrification occurs when insulating oil was forced to be circulated. In this paper, influence of temperature, velocity of flow, and insulating pipe and diameter on streaming electrification of vegetable insulating oil was investigated using forced circulation apparatus. Temperature effects were most significant, and it showed a peak in the temperature $30^{\circ}C$ to $35^{\circ}C$ at insulating and copper pipe. The change of flow electrification according to area variety could be checked by change of diameter.

Experimental study of internal flow field about 90degree elbow for cooling seawater pipe at the main condenser (주복수기 냉각해수배관의 직각 엘보 내부유동특성에 관한 연구)

  • Oh, Seung Jin;Cho, Dae Hwan;Bong, Tae Geun;Kim, Ok Sok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.152-153
    • /
    • 2012
  • While engine room arranging pipe which is used from the vessel, It measured the internal flow of 90 degree elbow which is used from the main condenser. Fluid flow in elbow of 90 degree is measured by PIV and Dewetron system. The Reynolds number adopts 50000 and experimental study of flow field in the elbow.

  • PDF

Geology and Ore Deposits of the Donghae Mine, Goseong Area (경남(慶南) 고성(固城) 동해광산(東海鑛山)의 지질(地質) 및 광상(鑛床))

  • Kim, Jong Dae
    • Economic and Environmental Geology
    • /
    • v.20 no.4
    • /
    • pp.213-221
    • /
    • 1987
  • The Donghae mine locates at Jangjoari, Koseongun, Kyongsang-nam-do. The geology of the mine consists of the upper part of Chin dong Formation conformably overlain by tuffaceous Koseong Formation. These formations are intruded by the granodiorite and the basic dikes. The ore mineralization occurs in the fault breccia pipe at the center of a granodiorite stock. The estimated dimension of the breccia pipe is $7m{\times}70m{\times}200m$. The host rock has distinctive hydrothermal alteration halos consisting hematite zone, chlorite zone, epidote zone and sericite zone from outer zone to the ore vein. The ore mineralization occurred in the three distinctive stages. The ore minerals formed in the first stage are pyrite, sphalerite, chalcopyrite, stannite and tetrahedrite. Galena and arsenopyrite are formed in the second stage. Some sphalerite grains include exsolution dots of the chalcopyrite. It is suggested that the ore mineralization occurred by a boiling of a hydrothermal fluid during its initial stage and subsequent cooling and $CO_2$ fugacity drop of remaining hydrothermal fluid by a ground water mixing aided vertical zoning of the ore minerals.

  • PDF

A Study on Selecting Criteria of Working Fluid in Loop Heat Pipes with a Circular Plate Type Evaporator

  • Nguyen, Xuanhung;Sung, Byung-Ho;Choi, Jee-Hoon;Jo, Jung-Rae;Yim, Kwang-Bin;Kim, Chul-Ju
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.309-314
    • /
    • 2008
  • increased heat dissipation and higher heat density of electronic equipment and/or parts released. A loop heat pipe(LHP) has been payed closer attention to the potential candidate of an electronic cooling. As of the LHP with a circular plate type evaporator developed, this study focused on its operating characteristics on the steady state in accordance with charging different working fluid. The relationship between working fluid and operating characteristics is discussed.

  • PDF

A Study on the Design of the Automatic Cutting Mechanism of the Perforation Pipes in an Automobile Muffler (차량 소음기용 다공파이프 자동절단 메커니즘 설계에 관한 연구)

  • Kim, Yong-Seok;Jeong, Chan-Se;Yang, Soon-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.350-356
    • /
    • 2011
  • In this paper, we proposed the automatic cutting mechanism of the perforation pipes in an automobile muffler. This cutting mechanism makes continuous work possible, because it performs the batch work via the sequential operation of loading, feeding, cutting, and discharging. The proposed cutting mechanism consists of the frame unit, escape unit, turning unit, feeding unit, vision system, clamping unit, spindle/cutting unit and cooling unit. And, these mechanisms have been modularized through mechanical, dynamical and structural optimized design using the SMO (SimDesigner Motion) analysis module. Also, the virtual prototype was carried out using the 3-D CAD program. The cutting process cycle is performed in the order of loading, vision processing, feeding, clamping, cutting and discharging. And the cycle time for cutting one piece was designed to be completed in four seconds.

An Improvement of Welding Method for the Corrugated Stainless Steel Tubing(CSST) (가스용 금속 플렉시블 호스의 용접방법 개선에 관한 연구)

  • Kim, Wan-Jin;Yi, Yeong-Seop;Choi, Jin-Lim
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.79-83
    • /
    • 2008
  • The corrugated stainless steel tubing(CSST) for the fuel gas piping system can be installed easily and quickly. It is often constructed under the ceiling and the wall which has a good flexibility and installation in comparison with iron pipe. However, the quality of the CSST is determined to depend upon the welding skill of stainless steel tubing. In this study, it is tested by controlling jet point of Ar as inert and cooling gas, and also compared with the bead state of welding point and the performance. As a result, it has the best condition when the jet point of Ar is located behind $5{\sim}10mm$ of the welding point.

Study on Performance Evaluation of Oscillating Heat Pipe Heat Exchanger for Low Temperature Waste Heat Recovery

  • Bui, Ngoc-Hung;Kim, Ju-Won;Jang, In-Seung;Kang, Jeong-Kil;Kim, Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.2
    • /
    • pp.73-81
    • /
    • 2003
  • The performance of heat exchanger using oscillating heat pipe (OHP) for low temperature waste heat recovery was evaluated. OHP used in this study was made from low finned copper tubes connected by many turns to become the closed loop of serpentine structure. The OHP heat exchanger was formed into shell and tube type. R-22 and R-141b were used as the working fluids of OHP with a fill ratio of 40 vol.%. Water was used as the working fluid of shell side. As the experimental parameters, the inlet temperature difference between heating and cooling water and the mass velocity of water were changed. The mass velocity of water was changed from 30 kg/$m^2$s to 92 kg/$m^2$s. The experimental results showed that the heat recovery rate linearly increased as the mass velocity and the inlet temperature difference of water increased. Finally, the performance of OHP heat exchanger was evaluated by $\varepsilon$-NTU method. It was found that the effectiveness would be 80% if NTU were about 1.5.

Hybrid Photovoltaic/Thermal Solar System with Pulsating Heat Pipe Type Absorber (진동형 히트파이프 흡열판이 결합된 하이브리드 태양광/열 시스템)

  • Kim, Chang-Hee;Jeon, Dong-Hwan;Kong, San-Gun;Kim, Jong-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2148-2153
    • /
    • 2007
  • The electricity conversion-efficiency of solar cell for commercial application is about 6-15%. More than 85% of the incoming solar energy is either reflected or absorbed as heat energy. Consequently, the working temperature of the photovoltaic cells increases considerably after prolonged operations and the cell's efficiency drops significantly. PV/T refers to the integration of a PV module and a solar thermal collector in a single piece of equipment. By cooling the PV module with a fluid steam like air or water, the electricity yield can be improved. At the same time, the heat pick-up by the fluid can be to support space heating or service hot-water systems. In this study, a pulsating heat pipe solar heat collector was combined with single-crystal silicon photovoltaic cell in hybrid energy-generating unit that simultaneously produced low temperature heat and heat and electricity. This experiment was investigating thermal and electrical efficiency for evaluation of a PV/T system.

  • PDF