• 제목/요약/키워드: Pipe Bending

검색결과 289건 처리시간 0.18초

하중-균열열림변위를 이용한 굽힘하중이 작용하는 원주방향 관통균열 배관의 새로운 J 실험법 (New J Testing Method Using Load-COD Curve for Circumferential Through-Wall Cracked Pipes under Bending)

  • 허남수;김윤재;김영진
    • 대한기계학회논문집A
    • /
    • 제30권1호
    • /
    • pp.60-65
    • /
    • 2006
  • The present paper provides experimental J estimation equation for the circumferential through-wall cracked pipe under four-point bending, based on the load-crack opening displacement (COD) record. Based on the limit analysis and the kinematically admissible rigid-body rotation field, the plastic ${\eta}$-factor for the load-COD record is derived and is compared with that for the load-load line displacement record. Comparison with the J results from detailed elastic-plastic finite element (FE) analysis shows that the proposed method based on the load-COD record provides reliable J estimates even for shallow cracks, whereas the conventional approach based on the load-load line displacement record gives erroneous results for shallow cracks. Thus, the proposed J estimation method could be recommended for testing the circumferential through-wall cracked pipe, particularly with shallow cracks.

굽힘하중을 받는 배관의 파단전누설거동 및 균열개구변위 (Leak-Before-Break Behavior and Crack Opening Displacement in Piping Under Bending Load)

  • 남기우
    • 대한기계학회논문집A
    • /
    • 제34권6호
    • /
    • pp.725-730
    • /
    • 2010
  • 부정정계 배관의 두께 관통 후 파단전누설 거동과 균열개구변위는 정정계 배관과 비교하여 연구 하였다. 부정정 배관은 균열 발생으로 인한 최대 강도의 감소가 비교적 적었다. 부정정 배관계의 파단 전누설 거동은 정정계 배관보다 더 안전 하였다. 균열개구변위는 미관통균열을 가지는 배관에서 균열 관통 후 평가하기 위하여 제안된 소성힌지를 사용하여 평가하였다.

배관에 존재하는 원주방향 표면균열에 대한 파괴거동 해석 (I) -J-적분 예측식 - (Fracture Behavior Estimation for Circumferential Surface Cracked Pipes (I) - J-Integral Estimation Solution -)

  • 김진수;김윤재;김영진
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.131-138
    • /
    • 2002
  • This paper provides the fully plastic J solutions for circumferential cracked pipes with inner, semi- elliptical surface cracks, subject to internal pressure and global bending. Solutions are given in the form of two different approaches, the GEF/EPRl approach and the reference stress approach. For the GE/EPRl approach, the plastic influence functions for fully plastic J are tabulated based on extensive 3-D FE calculations using the Ramberg-Osgood (R-O) materials, covering a wide range of pipe and crack geometries. The developed GEf/EPRl-type fully plastic J estimation equations are then re-formulated using the concept of the reference stress approach for wider applications. Based on the FE results, optimized reference load solutions for the definition of the reference stress are found for internal pressure and for global bending. Advantages of the reference stress based approach over the GE/EPRl-type approach are fully discussed. Validation of the proposed reference stress based J estimation equations will be given in Part II, based on 3-D elastic-plastic or elastic creep FE results using typical tensile properties of stainless steels and generalized creep- deformation behaviours.

Enhanced damage index method using torsion modes of structures

  • Im, Seok Been;Cloudt, Harding C.;Fogle, Jeffrey A.;Hurlebaus, Stefan
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.427-440
    • /
    • 2013
  • A growing need has developed in the United States to obtain more specific knowledge on the structural integrity of infrastructure due to aging service lives, heavier and more frequent loading conditions, and durability issues. This need has spurred extensive research in the area of structural health monitoring over the past few decades. Several structural health monitoring techniques have been developed that are capable of locating damage in structures using modal strain energy of mode shapes. Typically in the past, bending strain energy has been used in these methods since it is a dominant vibrational mode in many structures and is easily measured. Additionally, there may be cases, such as pipes, shafts, or certain bridges, where structures exhibit significant torsional behavior as well. In this research, torsional strain energy is used to locate damage. The damage index method is used on two numerical models; a cantilevered steel pipe and a simply-supported steel plate girder bridge. Torsion damage indices are compared to bending damage indices to assess their effectiveness at locating damage. The torsion strain energy method is capable of accurately locating damage and providing additional valuable information to both of the structures' behaviors.

Experimental behavior assessment of short, randomly-oriented glass-fiber composite pipes

  • Salar Rasti;Hossein Showkati;Borhan Madroumi Aghbashi;Soheil Nejati Ozani;Tadeh Zirakian
    • Steel and Composite Structures
    • /
    • 제47권6호
    • /
    • pp.679-691
    • /
    • 2023
  • The application of short, fiber-reinforced polymer composite pipes has been increasing rapidly. A comprehensive review of the prior research reveals that the majority of the previously-reported studies have been conducted on the filament-wound composite pipes, and fewer studies have been reported on the mechanical behavior of short, randomly-oriented fiber composite pipes. On this basis, the main objective of this research endeavor is to investigate the mechanical behavior and failure modes of short, randomly-oriented glass-fiber composite pipes under three-point bending tests. To this end, an experimental study is performed in order to explore the load-bearing capacity, failure mechanism, and deformation performance of such pipes. Fourteen properly-instrumented composite pipe specimens with different diameters, thicknesses, lengths, and nominal pressures have been tested and also simulated using the finite element approach for verification purposes. This study demonstrates the effectiveness of the diameter-to-thickness ratio, length-to-diameter ratio, and nominal pressure on the mechanical behavior and deformation performance of short, randomly-oriented glass-fiber composite pipes.

내진설계용 편심방식 가지배관 고정장치의 좌굴 실험 (Buckling Experiment of Eccentric Seismic Bracing Devices for Branch Lines)

  • 오창수;김지훈;공하성
    • 대한안전경영과학회지
    • /
    • 제26권1호
    • /
    • pp.9-14
    • /
    • 2024
  • Restraints of Branch Lines are used as earthquake-resistant support devices for fire-fighting pipes along with sway brace devices. The central types are aligned and fixed in a straight line with center of the pipe, but the eccentric types are fixed to on side of the pipe, so a bending moment occurs. In this study, three specimens each of central type and eccentric type were installed at an angle of 45° from the vertical and a monotonic compression load of 1340N was applied. All central type samples satisfied 17.8mm of the allowable displacement, but all eccentric type samples failed to meet the target load and buckled. Therefore, when considering the performance of eccentric type restraints, both compressive load and bending moment must be considered. Even through material mechanics calculations, the yield stress of eccentric type - 3/8 inch all threaded steel bolt - exceeds 320Mpa of the allowable stress. A experiment standards need to be established for eccentric type restraints.

스파이럴 파이프 네일링 시스템의 안정해석 및 적용성에 관한 연구 (A Study on Application and Stability Analysis of Spiral Pipe Nailing System)

  • 박시삼;박성철;정성필;김홍택
    • 한국지반환경공학회 논문집
    • /
    • 제5권2호
    • /
    • pp.41-49
    • /
    • 2004
  • 본 연구에서는 네일 삽입을 위한 천공작업 후, 공벽유지가 어려운 사질토 지반에 비교적 유리하게 적용할 수 있는 자천공방식의 스파이럴 파이프 네일링(SPN, Spiral Pipe Nailing) 시스템을 소개하고, 네일의 인장력 및 강성을 고려하여 안정성 평가를 하기위해 길이비($R_L$) 및 정착비($R_B$)를 다양하게 변화시켜가면서 간편시행쐐기법을 이용하여 한계평형해석을 수행하였다. 또한 FDM 수치해석 프로그램인 $FLAC^{2D}$ Ver. 3.30 프로그램을 사용하여, SPN 시스템 및 일반 쏘일네일링(GSN, General Soil Nailing) 시스템을 비교 평가하였다. 아울러 천공방법과 비트장착 등 SPN 시스템의 설계와 관련된 여러 인자에 대한 효과를 평가하기 위해, 6회의 변위제어방식 현장인발시험을 수행하였으며, 이를 토대로 SPN 시스템의 단기 인발거동특성을 평가해 보았다. 그 결과 SPN 시스템의 경우, GSN 시스템에 비해 강성, 인장강도 및 단위주면마찰력이 크게 발휘되므로, 전체안정성 측면에서 GSN 시스템에 비해 우수한 것으로 나타났다. 또한 강성을 고려한 간편시행쐐기법의 안정해석 결과를 살펴보면, 상용 한계평형해석 프로그램인 TALREN 97 프로그램의 안정해석 결과와 유사한 것으로 나타났다. 아울러 $FLAC^{2D}$ Ver. 3.30 프로그램 수치해석 결과를 살펴보면, SPN 시스템에서 유발되는 횡방향 변위의 경우, GSN 시스템에 비해, 10% 정도 감소하는 것으로 나타났다.

  • PDF

선박용 파이프 루프 곡선부의 구조해석에 관한 연구 (A Study on the Structural Analysis of Curved Portions of Pipe Loops Used in Ships)

  • 박치모;배병일
    • 한국해양공학회지
    • /
    • 제24권5호
    • /
    • pp.88-93
    • /
    • 2010
  • Many pipes that are arranged longitudinally in ships have loops at intervals to prevent the failure of the pipes as they absorb large portions of the axial load caused by the bending of the hull girder and/or thermal loads when the pipes are carrying very hot fluids. Since the loops are curved at corners, an efficient method for conducting the structural analyses of these curved portions is required. In this paper, a pipe loop was analyzed by an analytical method and by the finite-element method in four different ways, i.e., based on straight-beam elements, curved-beam elements, 2-D shell elements, and 3-D solid elements. The results of the five analyses were compared to check the validity of the current curved-beam theory. The paper includes some suggestions on how to analyze the pipe loops efficiently.

원전 엘보우의 성능기반 안전여유도 분석 (Investigation of the Performance Based Structural Safety Factor of Elbows in Nuclear Power Plants)

  • 이성호;박치용;박재학
    • 대한기계학회논문집A
    • /
    • 제33권8호
    • /
    • pp.826-831
    • /
    • 2009
  • The piping systems in nuclear power plant are composed of various typed pipes such as straight, elbow pipe, branch and reducer etc. The elbow is connected from straight pipe to another pipes in order to establish the complicated piping system. Elbow is one of very important components considering management of wall thinning degradation. It is however applied by various loads such as system pressure, earthquake, postulated break loading and many transient loads, which provoke simply the internal pressure, bending and torsional stress. In this study, firstly pipes in the secondary system of the nuclear power plant are classified as pipe size and type for selecting the investigating range. Next, a large number of finite element analysis considering the all typed dimensions of commercial pipe has been performed to find out the behavior of TES(twice elastic slop) plastic load of elbows, which is based on evaluation of the structural safety factor. Finally performance based structural safety factor was investigated comparing with maximum allowable load by construction code.

원통형 배관 지지대의 응력계수 개발 (Development of Stress Indices for Trunnion Pipe Support)

  • 김종민;박명규;엄세윤;이대희;박준수
    • 전산구조공학
    • /
    • 제9권3호
    • /
    • pp.115-123
    • /
    • 1996
  • 배관을 구속시키기 위한 원통형 배관 지지대(Trunnion Pipe Support)가 부착된 배관의 응력해석을 위하여 유한요소해석을 사용하였다. 해석결과로 부터 얻어진 응력은 두께에 대한 평균(막응력) 및 선형 응력(굽힘응력)으로 분류되었으며, 분류된 응력값은 압력에 에 의한 일차응력계수(B/sub 1/)와 이차응력계수(C/sub 1/), 모멘트에 의한 일차응력계수(B/sub 28/, B/sub 2T/)와 이차응력계수(C/sub 28/, C/sub 2T/)를 추정하기 위하여 ASME Code에 정의된것과 일치하게 해석되었다. 무차원의 함수로써 응력계수에 대한 경험식을 개발하기 위하여 여러 모델의 해석을 수행하였다.

  • PDF