• 제목/요약/키워드: Pipe Bend

검색결과 70건 처리시간 0.026초

강아지풀 형상을 닮은 관내 주행로봇 개발 (Development of a pipeline robot like foxtail)

  • 최용호;양현석;박노철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1167-1172
    • /
    • 2007
  • Generally inpipe robot needs force above standing for contacting robot to pipe. If the environment of the pipe-inside does not change, there is not a problem. But if the pipe radius change, or occur the obstacle which it does not intend, problem gets. So it uses a different system and must know an environment change, and changing the shape or a form of the robot. The research uses the flexible leg and is the robot which is adapted to the environment change of the pipe. The advantage of this robot is possible to move when it does not need to recognize a change of environment of pipe. Leg is bend with one direction. When it moves part that there are legs effect of leg direction the robot is moved with only one direction. If friction between legs and pipe is sufficient, not only verticality pipe moving, but also curved pipe moving. Also the obstacle of the pipe inside occurs and the diameter of the pipe inside changes, this robot can move if it does not use another system or device.

  • PDF

파이프 골조 온실 구조물의 표준내용연수 연구 (A Study on the Standard Durable Years of Pipe Framed Greenhouses)

  • 남상운
    • 한국농공학회지
    • /
    • 제43권1호
    • /
    • pp.96-101
    • /
    • 2001
  • In designing the greenhouse structures, snow and wind loads must be estimated on the basis of the probability of occurrence of snow or wind storms of a given intensity. The recurrence interval chosen depends on the standard durable years and safety factors of the greenhouse. This study was carried out to find the standard durable years of pipe framed greenhouses. Bend test for metallic materials was conducted on samples of galvanized steel pipes being used in greenhouse frames. A secular change of collapse loads and flexural rigidity for galvanized steel pipes were analyzed with the parts buried in the ground and exposed in the atmosphere. From those experimental results and corrosion rate of galvanized film, the standard durable years for pipe framed greenhouses are estimated as follows ; the small scale pipe houses of movable type is 7∼8 years and the large scale pipe houses of fixed type is 14∼15 years.

  • PDF

표준품셈 관부설 및 접합공사 품 개정 요인 분석 (Analysis on the Factor of Revision of Pipe Laying Down Material and Connection Work Material)

  • 오재훈;안방율
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.302-303
    • /
    • 2018
  • This study analyzed the major revision factors and revision contents for 'Construction-Standard-Production-Rate for Construction Works in 2018. Part 16. Pipe Laying Down and Connection" which was revised by the construction expense estimation standard's middle and long-term plans. The main reasons for the revision was analyzed to be unclear construction scope, limitations in applicable pipe material based on the facility type, labor force mainly composed of ordinary workers, limitations of labor force, and incomplete appropriation standard for the tool rent fee and equipment expenses. Through revision of factors, common items were newly established, organization was revised, the labor force was mainly composed of the technicians, and basis for appropriation of equipment expenses was arranged. In addition, through periodic revision, the appropriation standard for bend and special pipes was set. Consequently, more practical construction cost estimate standard is arranged through revision.

  • PDF

고주파 유도가열 및 동적 반력 모멘트를 이용한 파이프 벤딩 공정의 최적설계 (An Optimum Design of Pipe Bending Process Using High Frequency Induction Heating and Dynamic Reverse Moment)

  • 이현우;정성윤;우타관;김철
    • 소성∙가공
    • /
    • 제19권2호
    • /
    • pp.79-87
    • /
    • 2010
  • The Pipe bending process using high frequency local induction heating is an advanced technique to bend pipes with a small bending radius and a large diameter. Even though the pipe bending process is a quite widespread engineering practice, it depends heavily upon trial and error method by field engineers with several years of experience. So it is necessary to develop an integrated methodology for optimum design of the pipe bending process. During hot pipe bending using induction heating, outward wall thickness of a pipe is thinned due to tensile stress and the reduction of wall thickness is not allowed to exceed 12.5%. Taguchi method and dynamic reverse moment is proposed to maintain a reduction ratio of thickness within 12.5%, when D/t ratio is high. An application of the proposed approach was compared with those of the finite element analysis and has good in agreements.

ESPI 를 이용한 곡관 감육 결함부의 변형률 분포 측정 (Strain Distribution Measurement for Wall Thinning Defect in Pipe Bends by ESPI)

  • 아흐터나심;김경석;정성욱;박종현;최정석;정현철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.120-125
    • /
    • 2007
  • Put Abstract text here The strain distribution measurement for wall thinned pipe bends by ESPI is presented. Defect types observed in the steel piping in the nuclear power plants (NPP) are the crack at the weld part and the wall thinning defect in the pipe bends. Especially, the wall thinning defects in the pipe bends due to the flow-accelerated corrosion (FAC) is a main type of defects observed in the carbon steel piping system. ESPI is one of the optical non-destructive testing methods and can measure the stress and the strain distribution of the object subjected by the tensile loading or the internal pressure. In this paper, the strain distribution of the wall thinned pipe bends due to the internal pressure will be measured by ESPI technique and the results are discussed. From the results, the size of the wall thinning defect can also be measured approximately.

  • PDF

Numerical evaluation of buried composite and steel pipe structures under the effects of gravity

  • Toh, William;Tan, Long Bin;Tse, Kwong Ming;Raju, Karthikayen;Lee, Heow Pueh;Tan, Vincent Beng Chye
    • Steel and Composite Structures
    • /
    • 제26권1호
    • /
    • pp.55-66
    • /
    • 2018
  • In this paper, the response of an underground fibreglass reinforced plastic (FRP) composite pipe system subjected to realistic loading scenarios that may be experienced by an actual buried pipeline is investigated. The model replicates an arbitrary site with a length of buried pipeline, passing through a $90^{\circ}$ bend and into a valve pit. Various loading conditions, which include effects of pipe pressurization, differences in response between stainless steel and fibreglass composite pipes and severe loss of bed-soil support are studied. In addition to pipe response, the resulting soil stresses and ground settlement are also analysed. Furthermore, the locations of potential leakage and burst have also been identified by evaluating the contact pressures at the joints and by comparing stresses to the pipe hoop and axial failure strengths.

다구찌 방법을 이용한 지역난방시스템의 벤드형상 설계 (Shape Design of Bends in District Heating Pipe System by Taguchi Method)

  • 최문덕;김주용;고현일;조종두
    • 대한기계학회논문집A
    • /
    • 제34권3호
    • /
    • pp.307-313
    • /
    • 2010
  • 본 논문에서는 지역난방에 사용되는 이형관인 벤드(bend)의 형상설계에 대한 연구를 수행하였다. 지역난방관은 강관(내부)과 폴리우레탄 보온재(중앙부) 그리고 고밀도폴리에틸렌 외관(외부)의 3개의 중공관으로 구성되며 일반적으로 $10{\sim}120^{\circ}C$ 온도범위의 물이 $16kgf/cm^2$의 내압을 가지면서 수송된다. 이에 따라 작동 중 발생하는 반복적인 열적-기계적 하중을 지탱할 수 있어야 한다. 보통 지역난방관의 벤드부에는 폼패드라고 부르는 신축흡수재가 덧씌워지는데 이 폼패드의 노후에 따른 문제가 종종 발생한다. 본 논문에서는 벤드부에서의 폼패드 노후 문제를 경감시키기 위한 대안으로 폼패드를 없앤 이중보온관의 형상 설계를 제안하였다. 제안된 설계는 벤드부 강관에 전단고리(shear ring)를 적용하는 방법으로 이때 전단고리의 최적치수는 다구찌 방법과 유한요소법을 적용하여 접근하였다. 그 결과로 전단고리의 두께와 높이, 개수 순으로 최적화 효과가 있음을 확언하였다.

An Investigation of Heat Transfer Characteristics of Swirling Flow in a 180$^{\circ}$ Circular Section Bend with Uniform Heat Flux

  • Chang, Tae-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제17권10호
    • /
    • pp.1520-1532
    • /
    • 2003
  • An experiment was performed to obtain the local heat transfer coefficient and Nusselt number in a circular duct with a 180$^{\circ}$ bend for Re=6 x 10$^4$, 8 x 10$^4$ and 1 x 10$\^$5/ under swirling flow and non-swirling flow conditions. The test tube with a circular section was made from stainless steel having a curvature ration of 9.4. Current heat flux of 5.11 kW/㎡ was applied to the test tube by electrical power and the swirling motion of air was produced by a tangential inlet to the pipe axis at 180$^{\circ}$. Measurements of local wall temperatures and the bulk mean temperatures of air were made at four circumferential positions at 16 stations. The wall temperatures showed a reduced distribution curve at the bend for the non-swirling flow, but this effect did not appear for the swirling flow. The Nusselt number distributions for the swirling flow, which was calculated from the measured wall and the bulk temperatures, were higher than that of the non-swirling flow. The average Nusselt number of the swirling flow increased by about 90-100%, compared to that of the non-swirling flow. The Nu/Nu$\_$DB/ values at the 90$^{\circ}$ station for non-swirling flow and swirling flow were approximately 2.5 and 4.8 at Re=6x10$^4$ respectively. The values agree well with Said's results for non-swirling flow.

수평 평활관 및 전열촉진관내 대체 냉매 R-407C의 응축 열전달 특성에 관한 연구 (Heat Transfer Characteristics of R-407C During Condensing Inside Horizontal Smooth and Micro-Fin Tubes)

  • 노건상;오후규
    • 대한기계학회논문집B
    • /
    • 제23권2호
    • /
    • pp.210-217
    • /
    • 1999
  • This paper reports the experimental results on heat transfer characteristics of R-22 and R-407C(HFC-32/125/134a 23/25/52 wt%) condensing inside horizontal smooth and finned tubes. The test condensers used In the study are double pipe heat exchangers of 7.5 mm ID, 9.5 mm OD smooth tube, and 60 finned micro-fin tube with 8.53 mm ID, 9.53 mm OD. Each of these tubes was 4 000 mm long tubes connected with an U-bend. These U type two-path test tubes are divided In 8 local test sections for the identification of the local condensing heat transfer characterisitcs and pressure drop, U-bend effects on condensing flows. Inlet quality is maintained 1.0, and refrigerant mass velocity is varied from 102.0 to $301.0kg/m^2{\cdot}s$. From the results, it was found that the pressure drop of the R-407C Increased, and heat transfer coefficient decreased compared to those of R-22. In comparison condensing heat transfer characteristics of micro-fm tube with those of smooth tube, increasing of condensing heat transfer coefficient was found outstanding compared to the increasing ratio of pressure drop. Furthermore, pressure drop In U-bend showed at most a 30 % compared to the total pressure drop in the test section.

Investigation on the thermal butt fusion performance of the buried high density polyethylene piping in nuclear power plant

  • Kim, Jong-Sung;Oh, Young-Jin;Choi, Sun-Woong;Jang, Changheui
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1142-1153
    • /
    • 2019
  • This paper presents the effect of fusion procedure on the fusion performance of the thermal butt fusion in the safety class III buried HDPE piping per various tests performed, including high speed tensile impact, free bend, blunt notched tensile, notched creep, and PENT tests. The suitability of fusion joints and qualification procedures was evaluated by comparing test results from the base material and buttfusion joints. From the notched tensile test result, it was found that the fused joints have much lower toughness than the base material. It was also identified that the notched tensile test is more desirable than the high speed tensile impact and free bend tests presented in the ASME Code Case N-755-3 as a fusion qualification test method. In addition, with regard to the single low-pressure fusion joint performances, the procedure given by the ISO 21307 was determined to be better that the one specified in the Code Case N-755-3.