• Title/Summary/Keyword: Pinus merkusii

Search Result 11, Processing Time 0.024 seconds

Physical and Mechanical Properties of Glued Laminated Lumber of Pine (Pinus merkusii) and Jabon (Anthocephalus cadamba)

  • Lestari, Andi Sri Rahayu Diza;Hadi, Yusuf Sudo;Hermawan, Dede;Santoso, Adi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.143-148
    • /
    • 2018
  • The aim of this research was to determine the physical and mechanical properties of glued laminated lumber (glulam) made from jabon (Anthocephalus cadamba) and pine (Pinus merkusii). Three layers of lamina from each wood species were bonded using isocyanate adhesive with a glue spread of $280g{\cdot}m^{-2}$ and then pressed using cold press with a specific pressure of 1.47 MPa. Samples had dimensions of $3cm{\times}6cm{\times}100cm$ (thickness, width, and length, respectively). Glulam properties were tested based on Japanese Agricultural Standard (JAS) 234-2003. The results showed that the density of glulam was $0.36g{\cdot}m^{-3}$ for jabon and $0.73g{\cdot}m^{-3}$ for pine. The moisture content of all glulams fulfilled the JAS standard. The mechanical properties of pine glulam fulfilled the JAS standard in all tests, whereas jabon glulam fulfilled the standard in the modulus of rupture and shear tests.

Radial Variation in Selected Wood Properties of Indonesian Merkusii Pine

  • Darmawan, Wayan;Nandika, Dodi;Afaf, Britty Datin Hasna;Rahayu, Istie;Lumongga, Dumasari
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.323-337
    • /
    • 2018
  • Merkusii pine wood (Pinus merkusii) was extensively planted throughout Indonesia, where it is only indigenous in northern Sumatera, by the Dutch during colonial times. The demand for this wood species, especially in the domestic market, has increased notably, despite its limited durability regarding decay resistance. The purpose of this study was to investigate the occurrence of juvenile and mature wood on merkusii pine and to analyze its radial features from pith to bark based on density, shrinkage, static bending in modulus of rupture and modulus of elasticity, fiber length, microfibril angle, and durability. A segmented modeling approach was used to find the juvenile-mature transition. The graveyard test was performed to characterize the termite resistance from pith to bark of merkusii pine. The maturations were estimated to start at radial increments of 15 cm from the pith by fiber length and of 12 cm from the pith by microfibril angle. The projected figures for the proportion of juvenile wood at breast height were around 65%. The results also indicate that the pine wood was $0.52g/cm^3$ in density, 1.45 in coefficient of anisotropy, which indicates its good stability, 7597 MPa in modulus of elasticity, and 63 MPa in modulus of rupture. Natural durability against subterranean termite of the merkusii pine wood was rated to be grade 4 to 0 from pith to bark. However, after being treated by Entiblu and Enborer preservatives, its rating increased to grade 10 to 9.

Morphological and Anatomical Evaluation of Grafted Pinus merkusii

  • Susilowati, Arida;Iswanto, Apri Heri;Wahyudi, Imam;Supriyanto, Supriyanto;Siregar, Iskandar Z
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.903-912
    • /
    • 2016
  • Morphological and anatomical evaluation of grafted P. merkusii have been undertaken to obtain the information about compatible and incompatible symptoms of 18 years old grafts based on morphological observation and microscopic analysis. Samples of compatible and incompatible grafts were obtained from previous research conducted by the Silviculture Departement Team in 1994. Result showed that compatible grafts have normal stem form and secondary growth (diameter growth), but some abnormality symptoms like undulated pattern of annual growth rings, phloem thickening and abnormality resin ducts in inner and middle parts of the union area occurred. Incompatible ones showed abnormality of the stem form, cortex-bark necrosis and swelling in the union area. Microscopic observation showed abnormality of all parts of the union, undulated pattern of annual growth rings, phloem thickening, abnormal resin ducts, low numbers and discontinuity of vascular elements in the union area.

Hydrophilic Extracts of the Bark from Six Pinus Species

  • Masendra, Masendra;Ashitani, Tatsuya;Takahashi, Koetsu;Susanto, Mudji;Lukmandaru, Ganis
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.80-89
    • /
    • 2019
  • Pine barks are important biomass resources because they are utilised in the production of pine wood and rosins. However, no chemical study has been conducted on the hydrophilic status of pine barks in Indonesia. This aim of this study is to explore the hydrophilic extracts of the barks from six Pinus species (P. elliotii, P. caribeae, P. oocarpa, P. merkusii P. montezumae, and P. insularis). The hydrophilics of pine barks were analysed using gas chromatography-mass spectrometry. The presence of polyphenol contents in the ethanol extracts obtained from the barks of six Pinus species was determined using the tannin-formaldehyde method, Folin-Cioucalteu assay, and vanillin-HCl assay. The ethanol and hot water soluble extractives derived from inner barks were higher in quantity when compared to those derived from the outer bark samples. The polyphenol measurement showed that the highest value of total phenol content was derived from the outer bark of P. montezumae whereas those of the total phenol and tannin- formaldehyde contents were derived from the inner and outer barks of P. oocarpa. GC-MS analysis revealed that nitrogenous compounds are dominant constituents in the inner and outer barks of the six species, followed by sugars and monophenolics, respectively.

Preference of Subterranean Termites among Community Timber Species in Bogor, Indonesia

  • Arinana, ARINANA;Mohamad M., RAHMAN;Rachel E.G., SILABAN;Setiawan Khoirul, HIMMI;Dodi, NANDIKA
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.458-474
    • /
    • 2022
  • Many methods have been explored to increase the palatability of pine (Pinus merkusii), the most common wood used for termite baiting. However, because of the undersupply of pine in Indonesia, it is crucial to vary the wood species for termite baiting and look for potential alternatives. Furthermore, various studies have shown that baiting time influences the intensity and pattern of termite attacks. Therefore, the present research aimed to study the preferences of subterranean termites and find the ideal baiting time among community wood species from Bogor, West Java, as a baiting alternative to pine. The woods tested were Acacia mangium (acacia), Falcataria moluccana (sengon), Anthocephalus cadamba (jabon), Maesopsis eminii (manii), Swietenia mahagoni (mahogany), Hevea brasiliensis (rubberwood), and P. merkusii (pine). Field tests were carried out based on the American Society for Testing and Materials D 1758-06 at the Arboretum, Faculty of Forestry and Environment, IPB University, with a baiting time of one to six months. The results led to the identification of four species of termites, namely Microtermes sp., Macrotermes sp., Shedorhinotermes sp., and Capritermes sp.. The frequency of termite attacks on the test site reached 93.1%. Rubberwood was the most potential wood bait for subterranean termites, indicated by the highest average weight loss value (65.8%) with a shorter optimal baiting time (up to one month) than that of other tested woods.

Furfurylation Effects on Discoloration and Physical-Mechanical Properties of Wood from Tropical Plantation Forests

  • HADI, Yusuf Sudo;HERLIYANA, Elis Nina;PARI, Gustan;PARI, Rohmah;ABDILLAH, Imam Busyra
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.46-58
    • /
    • 2022
  • Wood from tropical plantation forests has lower physical and mechanical properties than mature wood. Furfuryl alcohol (FA) impregnation into the wood could help to enhance hydrophobic properties, dimensional stability, and structural strength. Furfurylation was applied to specimens of the following four fast-growing tropical wood species: jabon (Anthocephalus cadamba), sengon (Falcataria moluccana), mangium (Acacia mangium), and pine (Pinus merkusii). The discoloration and physical and mechanical properties were subsequently measured, and the results showed that furfurylated wood had a darker color and better physical and mechanical properties than untreated wood. Specifically, the furfurylated wood had higher density, modulus of elasticity, and hardness and lower moisture content, water absorption, swelling, and shrinkage. The furfurylation significantly enhanced physical and mechanical properties.

Fundamental Properties of Composite Board Made with Oriented Strand Board and Three Different Species of Veneer

  • Yanti, Hikma;Massijaya, Muh Yusram;Cahyono, Tekat Dwi;Novriyanti, Eka;Iswanto, Apri Heri
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.239-248
    • /
    • 2019
  • This research presents an improvement of the physical and mechanical properties of composite board (com-ply) made of Oriented Strand Board (OSB) coated with wood veneer of Pine (Pinus merkusii), Avocado (Persea Americana) and Mahogany (Swietenia mahogany). 1.5 mm thick veneers of those three wood types were adhered to the surface of OSB using two adhesive types: epoxy and isocyanate. The adhesive with the glue spread of $250g\;m^{-2}$ applied using single glue line was spread and then cold pressed with the pressure of $15kg\;cm^{-2}$ for 3 hours. The research result showed an improving dimension stability of com-ply, but not found on all parameters of physical property test. The moisture content seemed to be influenced by the com-ply type, yet not related to its thickness swelling, water absorption and linear expansion. The exception took place in the parallel linear expansion when immersed for 2 hours. The highest to the lowest increases of MOE and MOR were consecutively found on OSB coated with wood veneer of Pine, Mahogany and Avocado. However, the increases were statistically insignificant. The highest increasing screw hold power was found at the com-ply type AE (avocado veneer and epoxy adhesive) that was by 28%.

Physical and Mechanical Properties of Methyl Methacrylate-Impregnated Wood from Three Fast-Growing Tropical Tree Species

  • Hadi, Yusuf Sudo;Massijaya, Muh Yusram;Zaini, Lukmanul Hakim;Pari, Rohmah
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.324-335
    • /
    • 2019
  • Timber from plantation forests has inferior physical and mechanical properties compared to timber from natural forest because it is mostly from fast-growing tree species that are cut at a young age. Filling cell voids with methyl methacrylate (MMA) can improve the wood properties. The purpose of this study was to determine the physical and mechanical properties of MMA-impregnated wood from three fast-growing wood species, namely jabon (Anthocephalus cadamba (Roxb.) Miq.), mangium (Acacia mangium Willd) and pine (Pinus merkusii Jungh. & de Vriese). Wood samples were either immersed in MMA monomer or impregnated with it and then heated to induce the polymerization process. Jabon, which was the lowest density wood, had the highest polymer loading, followed by pine and mangium. The physical and mechanical properties of samples were affected by wood species and the presence of MMA, with higher-density wood having better properties than wood with a lower density. Physical and mechanical properties of MMA wood were enhanced compared to untreated wood. Furthermore, the impregnation process was better than immersion process resulting the physical and mechanical properties. Based on MOR values, the MMA woods were one strength class higher compared to untreated wood with regard to Strength Classification of Indonesian Wood.

Linear Expansion and Durability of a Composite Boards (MDF Laminated Using Three Selected Wood Veneers) against Drywood Termites

  • CAHYONO, Tekat Dwi;YANTI, Hikma;ANISAH, Laela Nur;MASSIJAYA, Muh Yusram;ISWANTO, Apri Heri
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.907-916
    • /
    • 2020
  • This research was conducted to investigate the linear expansion and resistance properties of a composite board (com-ply). This board was made of medium-density fiberboard (MDF) laminated using avocado (Persea americana), mahogany (Swietenia mahogani), and pine (Pinus merkusii) veneers. These three types of veneers were laminated on both surfaces of the MDF using adhesives, namely, epoxy and isocyanate. Glue (250 g·m-2) was spread on the surface, followed by cold press for 3 h with an applied pressure of 15 kg·cm-2. The research result revealed that com-ply exhibited an increased dimensional stability compared with MDF, indicated by reduction in water absorption, thickness swelling, and linear expansion. The com-ply made of the pine veneer and isocyanate adhesive exhibited high density, water absorption, thickness swelling, and screw withdrawal load. The com-ply that exhibited the strongest resistance to drywood termite attacks was the one made of the mahogany veneer and isocyanate adhesive. Moreover, the com-ply that exhibited the biggest weight loss (3.6 %) was made of the pine veneer and epoxy adhesive. The results of this research may facilitate in manufacturing com-ply using the selected veneer and adhesive without the application of hot press.

Resistance of Methyl Methacrylate-Impregnated Wood to Subterranean Termite Attack

  • Hadi, Yusuf Sudo;Massijaya, Muh. Yusram;Zaini, Lukmanul Hakim;Abdillah, Imam Busyra;Arsyad, Wa Ode Muliastuty
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.748-755
    • /
    • 2018
  • Timber from fast-growing tree species is susceptible to by biodeterioration attack, particularly subterranean termites. Impregnation with methyl methacrylate (MMA) potentially increases wood resistance to subterranean termite attack. Four wood species, namely sengon (Falcataria moluccana), jabon (Anthocephalus cadamba), mangium (Acacia mangium), and pine (Pinus merkusii), were impregnated with MMA, and samples of untreated and imidacloprid-preserved wood were prepared for comparison purposes. Small stakes, sized 0.8 cm by 2 cm in cross section by 20 cm in the longitudinal direction, were inserted into the ground for 3 months, and the weight loss of each specimen was determined at the end of the test period. A factorial $4{\times}3$ completely randomized design was used for data analysis; the first factor was wood species, and the second factor was treatment. The results showed that MMA polymer loadings were 27.88%, 24.91%, 14.14%, and 17.81% for sengon, jabon, mangium, and pine, respectively, and amounts of imidacloprid retention were $7.56kg/m^3$, $5.98kg/m^3$, $5.34kg/m^3$, and $9.53kg/m^3$, respectively. According to an analysis of variance, wood species, treatment, and interaction of both factors significantly affected the weight loss of wood specimens. Mangium had the smallest weight loss, followed by pine, sengon, and jabon. MMA impregnation into the wood increased the resistance of wood samples to subterranean termite attack during in-ground testing, but the resistance level was lower than that of imidacloprid-preserved wood. Except for mangium wood, the MMA treatment did not significantly affect resistance.