• 제목/요약/키워드: Pinion Gear

검색결과 120건 처리시간 0.02초

중심 거리 불변의 전위 계수를 적용한 기어 시스템의 변형 특성 해석 (Deformation Characteristics of Gear System with a Profile Shift Coefficient Preserving Center Distance)

  • 박수진;유완석
    • 대한기계학회논문집A
    • /
    • 제27권1호
    • /
    • pp.194-199
    • /
    • 2003
  • In this paper, elastic deformations of several gear teeth are analyzed. The contact between a gear and pinion is modeled as a contact problem. The deformation overlap, which is defined as the interference due to deformation of gear teeth, is defined to represent the deformation characteristics of profile shifted spur sear system. The calculated deformation overlap shows teeth interference in the deformed state of a Rear system.

기어 물림 효과에 의한 횡-비틀림 연성을 갖는 터보-냉동기 로터-베어링 시스템의 동특성 (Dynamic Characteristics of a Turbo-chiller Rotor-Bearing System having a Lateral-Torsional Coupling by Gear Mesh Effect)

  • 이안성;하진웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1034-1039
    • /
    • 2000
  • In turbo-machines operated at high speeds through gear speed increasers a precise coupled analysis of lateral and torsional vibrations is required to achieve highly reliable designs with low vibration and low noise levels, where the vibration coupling is due to the gear pair mesh stiffness. In this paper, applying the generalized coupled lateral-torsional finite element model of a gear pair element, has been analyzed a coupled lateral-torsional vibration of the prototype 800 RT turbo-chiller rotor-bearing system with a bull-pinion gear speed increaser. Results have shown that the coupled torsional natural frequencies have decreased due to the coupling effect of lateral vibration and particularly, the 2nd torsional natural frequency and its mode shape have had big changes. However, changes of lateral vibration characteristics have been noticed only at high lateral whirl natural frequencies above 15,000 rpm.

  • PDF

차동 기어의 진동 저감을 위한 동력 전달계 진동 해석 (Vibrational analysis of driveline for reducing differential gear vibration)

  • 최은호
    • 한국생산제조학회지
    • /
    • 제6권3호
    • /
    • pp.96-102
    • /
    • 1997
  • Eigenvalue analysis of vibration mode and an analysis by frequency response among the methods of predicting gear noise are related with transmitting sound of vibration. In this study we intended to reduce the vibration noise of differential gear by reducing torque fluctuation of drive pinion shaft which causes vibration noise of differential gear in rear wheel drive vehicles. For this we developed multi-degree of freedom analysis model in which mass moment of inertia and torsional spring combined and we examined the influence of torsional vibration of driveline elements by performing forced vibration analysis of engine excitation torque. We studied the methods for reducing torsional vibration of driveline according to the design factor of propeller shaft and examined the effects reducing vibration in differential gear by applying flexible coupling.

  • PDF

파워스티어링 기어박스 특성을 이용한 중립 조향감의 향상 (Improvement of on Center Steer Feel by Using Power Steering Gear Box Characteristics)

  • 이병림;이재응
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.202-208
    • /
    • 2002
  • Ball k nut type steering gear box has disadvantages on on-center range as compared with rack & pinion type because of many linkages. In this study, a technique which can improve the on-center loose feel is introduced. The improvement can be obtained by putting simple devices on steering gear box valve body which can change the stiffness of steering gear on on-center handling range. Analysis and test of the vehicle with improved steering system are performed.

MVR 담수화장비용 터보 증기압축기의 개발 (Development of Turbo Steam Compressors for MVR System)

  • 오종식;성병일;현용익
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.482-486
    • /
    • 2003
  • A high-efficiency turbo steam compressor has been successfully developed for the MVR desalination system, first one in Korea. The state-of-the-art design methods using real gas properties were applied to get all the aerodynamic design results. Bull and pinion gear trains, tilting-pad bearings and investment cast impellers were developed also to be integrated into the integral gear-driven turbo steam compressor. System tests show highly efficient performance.

  • PDF

Effects of PTO gear face width on safety factors

  • Jang, Jeong-Hoon;Chung, Sun-Ok;Choi, Chang-Hyun;Park, Young-Jun;Chun, Won-Ki;Kim, Seon-Il;Kwon, Oh-Won;Kim, Chang-Won;Hong, Soon-Jung;Kim, Yong-Joo
    • 농업과학연구
    • /
    • 제43권4호
    • /
    • pp.650-655
    • /
    • 2016
  • Gears are components of transmission which transmit the power of an engine to a machine and offer numerous speed ratios, a compact structure, and high efficiency of power transmission. Gear train design in the automotive industry uses simulation software. However, PTO (Power Take-Off) gear design for agricultural applications uses the empirical method because of the wide range of load fluctuations in agricultural fields. The PTO is an important part of agricultural tractors which transmits the power to various tractor implements. Therefore, a simulation was essential to the optimal design of the PTO. When the PTO gear is optimally designed, there are many advantages such as low cost, reduced size, and light weight. In this study, we conducted the bending and contact safety factor simulation for the PTO gear of an agricultural tractor. The bending and contact safety factors were calculated on ISO 6336 : 2006 by decreasing the face widths of the PTO pinion and wheel gear from 18 mm at an interval of 1 mm. The safety factor of the PTO gear decreased as the face width decreased. The contact safety factors of the pinion and wheel gear were 1.45 and 1.53, respectively, when the face width was 18 mm. The simulation results showed that the face width of the PTO gear should be greater than 9 mm to maintain the bending and contact safety factors higher than 1. It would be possible to reduce the weight of the PTO gear for different uses and working conditions. This study suggests that the possibility of designing an optimal PTO gear decreases as its face width decreases.

터보 냉동기의 변동 기어하중을 고려한 로터다이나믹 해석 Part I : 구동 모터-불기어 로터-베어링 시스템 (Rotordynamic Analysis of a Turbo-Chiller with Varying Gear Loadings Part I ; A Driving Motor-Bull Gear Rotor-Bearing System)

  • 이안성;정진희
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.593-599
    • /
    • 1999
  • A rotordynamic analysis is performed with a motor-bull gear rotor system supported on two partial bearings, which is intended to drive a high-speed turbo-chiller compressor impeller shaft through its built-in pinion gear. The motor-bull gear rotor system has a rated speed of 3,600 rpm, and is modeled utilizing the finite element method for analysis. As loadings on the bearings due to the gear action are significant in the system considered, each resultant bearing load is calculated statically by considering the generalized forces of the gear action as well as the rotor itself. The two support partial bearings are designed to take their varying loads along with their varying load angles, and they are also analyzed to give their rotordynamic coefficients. Then, a complex rotordynamic analysis of the motor-bull gear rotor-bearing system is carried out to evaluate its whirl natural frequencies and mode shapes and unbalance responses under various loading conditions. Results show that the bearings and entire rotor system are well designed regradless of operating conditions, i.e., loads and operating speeds.

  • PDF

증속 기어 압축기용 스러스트 칼라의 윤활 성능 해석 (Performance Analysis of Oil-lubricated Thrust Collars in Integrally Geared Compressors)

  • 이동현;김병옥;선경호
    • Tribology and Lubricants
    • /
    • 제34권5호
    • /
    • pp.169-174
    • /
    • 2018
  • A multi-stage compressor (MSC) is comprised of several impellers installed in the pinion gear shaft driven by a main bull gear. In the pinion shaft, a thrust collar (TC) is installed to support the thrust load. The TC makes the lubrication system simpler in the MSC; therefore, it is widely used in similar kinds of machinery. Typically, TCs are installed on both sides of the bull gear and pressure is developed in the lubricated area by creating a taper angle on the TC and bull gear surface. In the current study, we developed a numerical analysis model to evaluate the performance of the TC considering its design parameters. We sloved the Reynolds equation using the finite element method and applied the half Sommerfeld condition to consider cavitation. Based on the pressure calculated in the lubricated area, we calculated the power loss and minimum film thickness. In addition, we calculated stiffness and damping using perturbation method. We performed parametric studies using the developed model. The results of the analysis show that the maximum pressure presents in the center area of the TC and it increases with the taper angle. The area over which pressure is developed decreases with the taper angle. The results also show that there is an optimum taper angle providing minimum power loss and maximum film thickness. Additionally, the stiffness and damping decrease with the taper angle. As the applied load increases, the power loss increases and the minimum film thickness decreases. However, the stiffness and damping increase with the applied load.

기어 전달오차 측정 장비의 설계에 관한 연구 (A Study on the Design of a Gear Transmission Error Test Rig)

  • 장기;장정;연후링;주징왕;허철수;류성기
    • 한국기계가공학회지
    • /
    • 제15권1호
    • /
    • pp.14-19
    • /
    • 2016
  • Transmission error (TE) is the most important cause of gear noise and vibration because TEs affect the changes of the force and the speed of gears. TE is usually expressed as an angular deviation, or a linear deviation measured at the pitch point and calculated at successive positions of the pinion as it goes through the meshing cycle. Accurate measurement of TE for gear transmission will provide a reasonable basis for gear design, manufacturing processes and quality control. Therefore, in order to study the accuracy of the gear transmission, stability, TE, vibration and noise after gear micro-geometry modification, a gear transmission test rig is proposed in this paper, which is based on the existing technical conditions, by using reasonable testing methods, hardware and a signal processing method. All of the details and the experience can be taken into consideration in the next upgraded test rig.

증속 기어 전동 로터-베어링 시스템의 횡-비틀림 연성 유한요소 로터다이나믹 해석 (A Coupled Lateral and Torsional FE Rotordynamic Analysis of Speed Increasing Geared Rotor-Bearing System)

  • 이안성;하진웅;최동훈
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.82-88
    • /
    • 2001
  • In a transmission or geared rotor system a coupled phenomenon of lateral and torsional vibrations may occur due to the gear meshing effect. Particularly, in high speed or low vibration and low noise applications of geared rotor systems a coupled rotordynamic analysis is required to precisely predict their dynamic characteristics. In this paper a generalized finite element model of a gear pair element is developed, which actively couples the lateral and torsional vibrations due to the gear meshing effect. In the modeling the generalized forces due to the transmission error. geometrical eccentricities. and unbalances in the gear system are also considered. Then. using the developed gear pair element model a coupled unforced rotordynamic analysis is performed with a prototype 800 RT turbo-chiller rotor-bearing system having a hull-pinion speed increasing gear. Results show that the torsional vibration characteristics experience some changes due to the gear meshing and lateral dynamic coupling effect, but that they have no adverse effect and the lateral ones have no practical changes in an operating speed range.

  • PDF