• Title/Summary/Keyword: Pinching

Search Result 174, Processing Time 0.024 seconds

Efficient Simulation of Hysteretic Behavior of Diagonally Reinforced Concrete Coupling Beams (효율적인 대각보강 콘크리트 연결보의 이력거동 예측)

  • Koh, Hyeyoung;Han, Sang Whan;Lee, Chang Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.95-101
    • /
    • 2018
  • Diagonally reinforced concrete coupling beams (DRCB) play an important role in coupled shear wall systems since these elements dissipate most of seismic input energy under earthquake loading. For reliable seismic performance evaluation using nonlinear response history analysis, it is important to use an accurate analytical model for DRCBs. In this study, the Pinching4 model is used as a base model to simulate the cyclic behavior of DRCBs. For simulating the cyclic behavior of DRCBs using the Pinching4 model, the analytical parameters for backbone curve, pinching and cyclic deterioration in strength and stiffness should be computed. To determine the proper values of the constituent analytical parameters efficiently and accurately, this study proposes the empirical equations for the analytical parameters using regression analyses. It is shown that the hysteretic behavior of coupling beams can be simulated efficiently and accurately using the proposed numerical model with the proposed empirical equations of model parameters.

Hysteresis Model for the Cyclic Response of Existing Reinforced Concrete Frames (기존 철근콘크리트 골조의 반복거동 예측을 위한 이력모델)

  • Son, Joo-Ki;Lee, Chang-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.3
    • /
    • pp.81-89
    • /
    • 2020
  • As the damage caused by earthquakes gradually increases, seismic retrofitting for existing public facilities has been implemented in Korea. Several types of structural analysis methods can be used to evaluate the seismic performance of structures. Among them, for nonlinear dynamic analysis, the hysteresis model must be carefully applied because it can significantly affect the behavior. In order to find a hysteresis model that predicts rational behavior, this study compared the experimental results and analysis results of the existing non-seismic reinforced concrete frames. For energy dissipation, the results were close to the experimental values in the order of Pivot, Concrete, Degrading, and Takeda models. The Concrete model underestimated the energy dissipation due to excessive pinching. In contrast, the other ones except the Pivot model showed the opposite results with relatively little pinching. In the load-displacement curves, the experimental and analysis results tended to be more similar when the column axial force was applied to columns.

Strength and Stiffness Analysis for a Flexible Gripper with Parallel Pinching and Compliant Grasping Capabilities (순응형 파지와 정밀한 집기가 가능한 유연한 그리퍼의 강도 및 강성 분석)

  • Lee, Deok Won;Jeon, Hyeong Seok;Jeong, Young Jun;Kim, Yong Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.817-825
    • /
    • 2016
  • In this paper, we introduce a flexible gripper that we have engineered to precisely pinch in parallel and compliantly grasp objects. As found in most conventional industrial grippers, the parallel pinching property is essential for precise manipulation. On the other hand, the grippers with a flexible structure are more adept at grasping objects with arbitrary shapes and softness. To achieve these disparate properties, we introduce a flexible gripper mechanism composed of multiple flexible beam structures. Utilizing these beam structures, the proposed gripper is able to grasp arbitrarily shaped objects. Additionally, a unique combination of flexible beams enables the gripper to pinch objects using the parallel fingertips for enhanced precision. A detailed description of the proposed mechanism is provided, and an analysis of the strength and stiffness of the fingertip and finger body is presented. The Results section compares the theoretical and experimental analyses and verifies the properties and performance of the proposed gripper.

Prevention of Work-related Musculoskeletal Disorders in Grapes Pinching by Using Electro-motion Scissors Designed Ergonomically

  • Chae, Hye-Seon;Kim, Sung-Cheol;Kim, Kwan-Woo;Lee, Kyung-Suk;Kim, Hoy-Cher;Park, Keun-Sang
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.749-755
    • /
    • 2011
  • Objective: The purpose of this study is to assess the reducing effect of workload on developed electro-motion scissors. Methods: To achieve this, we measured the pressure distribution, Joint angle of fingers and JSI(Job Strain Index) for electro-motion scissors and hand-operated scissor in objective assessment and surveyed the uncomfortable degree in subjective assessment. Results: As a result, The peak of pressure in the electro-motion scissors was generally lower than the hand-operated scissors. JSI and overall joint angle of fingers for the electro-motion scissors were remarkably lower than the hand-operated scissors. Also, the subjective uncomfortable degree showed that the uncomfortable point of electro-motion scissors were generally lower than the hand operated scissors. Conclusion: The impact of reducing the work load as well as distributing the pressure around the hand by using electro-motion scissors during grapes pinching was confirmed.

Pinching and Energy Dissipation Capacity of Flexure-Dominated RC Members (휨지배 철근콘크리트 부재의 핀칭과 에너지 소산능력)

  • Park, Hong-Gun;Eom, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.594-605
    • /
    • 2003
  • Pinching is an important property of reinforced concrete member which characterizes its cyclic behavior. In the present study, numerical studies were performed to investigate the characteristics of pinching behavior and the energy dissipation capacity of flexure-dominated reinforced concrete members. By investigating existing experiments and numerical results, it was found that flexural pinching which has no relation with shear action appears in RC members subject to axial compression force. However, members with specific arrangement and amount of re-bars, have the same energy dissipation capacity regardless of the magnitude of the axial force applied even though the shape of the cyclic curve varies due to the effect of the axial force. This indicates that concrete as a brittle material does not significantly contribute to the energy dissipation capacity though its effect on the behavior increases as the axial force increases, and that energy dissipation occurs primarily by re-bars. Therefore, the energy dissipation capacity of flexure-dominated member can be calculated by the analysis on the cross-section subject to pure bending, regardless of the actual compressive force applied. Based on the findings, a practical method and the related design equations for estimating energy dissipation capacity and damping modification factor was developed, and their validity was verified by the comparisons with existing experiments. The proposed method can be conveniently used in design practice because it accurately estimates energy dissipation capacity with general design parameters.

Cultural Practices Affecting the Growth and Tuber Yield of Yam Bean (Pachyrhizus erosus L.) (얌빈 생육과 괴경 수량에 영향을 미치는 재배요인)

  • Nam, Hyo-Hoon;Kwon, Jung-Bai;Lee, Joong-Hwan;Son, Chang-Ki;Seo, Young-Jin
    • Korean Journal of Plant Resources
    • /
    • v.32 no.1
    • /
    • pp.38-44
    • /
    • 2019
  • This study was conducted to establish a domestic cultivation system of a newly introduced yam bean (Pachyrhizus erosus L.). Growth and yield were investigated in response to various cultural practices, such as seedling raising, planting distance, pinching, and flower pruning. Optimum conditions for raising of seedling were an average temperature of $22^{\circ}C$ for 30 days. Considering of the raising efficiency and the convenience of transplanting, 128 cells per tray was a suitable size. When pinching at a height of 120 cm from late July to early August, yield increased by 22% compared to no pinching. Flower pruning between late August and early September increased the number of tubers and tuber yield by 32% in comparison with no flower pruning. Yam bean seedlings planted at $50cm{\times}30cm$ spacing resulted in 30% yield increase as compared to wider spacing of $100cm{\times}30cm$. Our results thus suggested that the optimal combination of cultural practices ($50{\times}30cm$ planting distance, pinching at 120 cm height, and one time of flower pruning) increase profitability by 107%. All these results suggest high possibility of yam bean as a new income crop in Korea.

Growth and Quality of Muskmelon (Cucumis melo L.) as Affected by Fruiting Node Order, Pinching Node Order and Harvest Time in Hydroponics Using Coir Substrate (코이어 배지를 이용한 멜론(Cucumis melo L.) 수경재배 시 착과 절위, 적심 절위 및 과실 수확시기에 따른 멜론의 생육 및 품질 특성)

  • Lim, Mi Young;Choi, Su Hyun;Choi, Gyeong Lee;Kim, So Hui;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.406-413
    • /
    • 2020
  • This study was conducted to find out optimum fruiting node order, pinching node order, and harvesting time in hydroponics using coir substrates to produce high quality melon (Cucumis melo L.) fruit. Three plants per coir slab (100 × 20 × 10 cm) were planted for each treatment. Yamazaki standard nutrient solutions for melon were supplied with 1.8, 2.0, and 2.3 dS·m-1 at the early, middle (fruit enlargement step), and late growth stages, respectively. Two cultivars of 'PMR Dalgona' and 'Earl's Aibi' were used for fruiting node order and pinching node order experiments. Fruiting node treatments were conducted three replications (8-10 th, 11-13 th, and 14-15 th nodes) and pinching node treatments treated with three replications (18 th, 21 th, and 24 th nodes). Two cultivars of 'PMR Dalgona' and 'Earl's Crown' were used for fruit harvesting time experiment and treated with in four replications (45, 50, 55, and 60 days after fruiting). In growth characteristics, the leaf width and leaf area of 'PMR Dalgona' were the greatest 28.2 cm and 10,845 ㎠. Respectively, 11-13 th fruiting nodes or more. The node length of 'Earl's Aibi' was the longest by 147.6 cm at 11-13 th fruiting nodes. For fruit quality characteristics, the fruit weight of 'Earl's Aibi' at 11-13 th fruiting node fruiting was the greatest by 2.0 kg. The soluble solids content (SSC) of 'PMR Dalgona' was the highest by 14.5 °Brix at 8-10 th nodes in fruiting node orders and 14.5 °Brix at the 24 th pinching node order, respectively with significant difference. The SSC tends to increase in the same for both cultivars of 'PMR Dalgona' and 'Earl's Aibi' as the position of fruiting node was lower. The SSC and fruit weight of melon harvested at 55-60 days after fruiting was the best. From the results of this study, most of SSC tends to increase in the lower position of fruiting node order and the higher pinching node order, whereas the fruit weight shows a tendency of increasing with higher fruiting node. In addition, the SSC of fruit increased as the number of days after fruiting increased, and further research is needed for more various cultivars. In melon hydroponics using coir substrates, it is needed to figure out the characteristics of each cultivar to determine optimum fruiting node order, pinching node order, and fruit harvest time.

Cracking behavior of RC shear walls subject to cyclic loadings

  • Kwak, Hyo-Gyoung;Kim, Do-Yeon
    • Computers and Concrete
    • /
    • v.1 no.1
    • /
    • pp.77-98
    • /
    • 2004
  • This paper presents a numerical model for simulating the nonlinear response of reinforced concrete (RC) shear walls subject to cyclic loadings. The material behavior of cracked concrete is described by an orthotropic constitutive relation with tension-stiffening and compression softening effects defining equivalent uniaxial stress-strain relation in the axes of orthotropy. Especially in making analytical predictions for inelastic behaviors of RC walls under reversed cyclic loading, some influencing factors inducing the material nonlinearities have been considered. A simple hysteretic stress-strain relation of concrete, which crosses the tension-compression region, is defined. Modification of the hysteretic stress-strain relation of steel is also introduced to reflect a pinching effect depending on the shear span ratio and to represent an average stress distribution in a cracked RC element, respectively. To assess the applicability of the constitutive model for RC element, analytical results are compared with idealized shear panel and shear wall test results under monotonic and cyclic shear loadings.

Totally complex sumbanifolds in CaP^2

  • Liu, Ximin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.141-148
    • /
    • 1998
  • In the present paper, some pinching theorems for the curvatures of the totally complex submanifolds of the Cayley projective plane $CaP^2$ are obtained.

  • PDF