• Title/Summary/Keyword: Pin-fin

Search Result 72, Processing Time 0.022 seconds

Computation of Compact Heat Exchanger Performance by the Heat Exchangelet Method : Effect of Tube-to-tube Conduction along the Fin (미소열교환기법에 의한 밀집형 열교환기의 성능 계산 : 핀을 통한 튜브간 전도의 영향)

  • 성시경;송태호;최영철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.494-501
    • /
    • 2000
  • Effectiveness of a 3-pass plate finned-tube heat exchanger is calculated using heat exchangelet method by changing the shape of fin and the arrangement of tubes. The alternative refrigerant R134a is taken in this study. Conduction between neighboring tubes along the fin is taken into account in addition to convection between the fin and the surrounding air. Governing equations are obtained by using energy balance in a small control volume containing a tube and fins. They are numerically solved following the tube. Effect of tube-to-tube conduction is investigated in single-phase and two-phase flows with various fin shapes and arrangements of tubes. Improvement of effectiveness by fin perforation is studied too. The results shows that perforating fins, increasing the number of tubes, and increasing the distance between neighboring tubes at the same fin area enhance the effectiveness.

  • PDF

An Experimental Study on Cooling Characteristic according to Fin Array of Aluminum Heat Sink (히트싱크의 핀 배열에 따른 냉각특성에 관한 실험적 연구)

  • Yoon, Sung-Un;Kim, Jae-Yeol;Gao, Jia-Chen
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.138-143
    • /
    • 2018
  • In general, the operating temperature of electronic equipment is closely related to product life and reliability, and it is recognized that effectively cooling the parts is an important problem. In this paper, an experimental study on the cooling characteristic according to the pin array of the heat sink is conducted. The experiment on the heat sink was based on the natural convection and temperature distribution changes. The experimental results indicate that the pin array of the heat sink has an effect on the thermoelectric module's cooling characteristic.

Experiment and Analysis on the Heat Transfer Characteristics of a Channel Filled with Metal Form (발포 금속을 사용하는 채널의 열전달 특성 실험 및 해석)

  • Son, Young-Seok;Shin, Jee-Young;Cho, Young-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.448-453
    • /
    • 2010
  • Porous media containing complex fluid passage have especially large surface area per unit volume. This study is aimed to identify the heat transfer characteristics of high-porosity metal foams in a horizontal channel. Experiment is performed under various heat flux, velocity and pore density. Nusselt number decreases with higher pore density. Metal foams shows higher heat transfer coefficients than pin-fin structure with the same porosity. This is due to the more complex flow passage and larger heat transfer area based on the structure of the metal foams. The analysis on the pin-fin structure may not be suitable to the metal foam structure but should be identified extensively through further study.

Analysis of Threshold Voltage Characteristics for FinFET Using Three Dimension Poisson's Equation (3차원 포아송방정식을 이용한 FinFET의 문턱전압특성분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2373-2377
    • /
    • 2009
  • In this paper, the threshold voltage characteristics have been analyzed using three dimensional Poisson's equation for FinFET. The FinFET is extensively been studing since it can reduce the short channel effects as the nano device. We have presented the short channel effects such as subthreshold swing and threshold voltage for PinFET, using the analytical three dimensional Poisson's equation. We have analyzed for channel length, thickness and width to consider the structural characteristics for FinFET. Using this model, the subthreshold swing and threshold voltage have been analyzed for FinFET since the potential and transport model of this analytical three dimensional Poisson's equation is verified as comparing with those of the numerical three dimensional Poisson's equation.

Numerical study on the thermal performance of passively cooled hybrid fins (수동적으로 냉각되는 하이브리드 휜들의 열성능에 대한 수치적 연구)

  • Jeon, Mun Soo;Kim, Kyoung Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.816-821
    • /
    • 2013
  • This paper reports numerical study results with respect to the thermal performance of various hybrid fins (HFs) and a pin fin (PF) passively cooled under natural convection state. Investigated HFs are a basic hybrid fin (BHF), a hollow hybrid fin (HHF), and a solid hybrid fin (SHF). CFD models for both HFs and the PF have been developed to explore their thermal performance under various heat dissipations. Thermal performances of fins have been analyzed by quantifying array-based heat transfer coefficients, $h_a$, and mass-based heat transfer coefficients, $h_m$, for each fin. Study results show that $h_a$ of the SHF is 23% greater than that of the PF. $h_m$ of the HHF is found to be even 140% greater than that of the PF, and the HHF is found to be 40% better than the BHF in terms of the mass-based performance, $h_{m{\cdot}}$.

A NUMERICAL SIMULATION FOR THE PERFORMANCE CHARACTERIZATION OF HEAT SINKS (Heat Sink의 특성확인을 위한 수치적 Simulation)

  • Kim, Chang Nyung;Moon, Sung-il
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.147-156
    • /
    • 1999
  • A numerical simulation has been carried out for the performance characterization of heat sinks in electronic equipment. Heat transfer characteristics have been analyzed for various design parameters including the shape of heat sink, thickness of fin base and fin pitches. A commercial program called Flotherm has been employed for the numerical calculation. Optimal design of the heat sink has been persued which is closely related with the reduction of heat resistance involved in conduction and convection of heat.

  • PDF

Effects of AC Electrostatic Field Applied to fin-to-Pin/Plate-to-Plate Electrodes on Soot Reduction in a C2B4 Normal Diffusion Flame (핀-핀 형 또는 판-판 형 전극에 인가된 AC 전기장이 에틸렌 정상 확산 화염 Soot 입자 배출에 미치는 영향)

  • Lee, Jae-Bok;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1062-1068
    • /
    • 2002
  • In our previous study, it was proven that the mean size and the total number concentration of carbon soot particles emitted from a $C_2$H$_4$ normal diffusion flame decreased when a DC corona was discharged to pin-pin electrodes. In this work the effect of AC corona discharge on soot emission was investigated and compared with that of DC corona discharge. For the pin-pin electrodes the size of soot particles and the number concentration decreased by the AC voltage. There were only slight changes in size distribution with frequencies, while the magnitude of applied voltage was constant. When the electric field was applied to plate-plate electrodes, the size and the number concentration also decreased with the applied AC voltages. For applied voltages above 2kV the effect of frequency increase on the soot emission was effective.

SHAPE OPTIMIZATION OF INTERNAL COOLING CHANNEL WITH STEPPED CIRCULAR PIN-FINS (단을 가진 원형 핀휜이 부착된 냉각유로의 형상 최적 설계)

  • Moon, M.A.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.229-232
    • /
    • 2008
  • This study presents a numerical procedure to optimize the shape of stepped circular pin-fins to enhance turbulent heat transfer. The KRG method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The objective function is defined as a linear combination of heat transfer and friction loss related terms with a weighting factor. Ten training points are obtained by Latin Hypercube Sampling for two design variables. Optimum shape has been successfully obtained with the increased objective function.

  • PDF

SHAPE OPTIMIZATION OF INTERNAL COOLING CHANNEL WITH STEPPED CIRCULAR PIN-FINS (단을 가진 원형 핀휜이 부착된 냉각유로의 형상 최적 설계)

  • Moon, M.A.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.229-232
    • /
    • 2008
  • This study presents a numerical procedure to optimize the shape of stepped circular pin-fins to enhance turbulent heat transfer. The KRG method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The objective function is defined as a linear combination of heat transfer and friction loss related terms with a weighting factor. Ten training points are obtained by Latin Hypercube Sampling for two design variables. Optimum shape has been successfully obtained with the increased objective function.

  • PDF