• Title/Summary/Keyword: Piloti Building

Search Result 47, Processing Time 0.019 seconds

Seismic Fragility of Low-rise Piloti Buildings Designed According to KDS 41 17 00 (KDS 41 17 00에 따라 설계된 저층 필로티 건물의 지진 취약도)

  • Joo, Changhyeok;Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.49-58
    • /
    • 2022
  • The 2017 Pohang earthquake caused severe damage to low-rise piloti buildings. The damage was caused mainly by column shear failure, and some core walls were as well. The damaged piloti buildings in Pohang City could be relieved if they were designed correctly according to the standards at that time. However, the post-earthquake investigation revealed design, construction, and permission problems. To solve the problems, the Piloti Building Structure Design Guidelines that include strict specifications were published in 2018. Separately, KDS 41 17 00, the seismic design standard for buildings, was enacted in 2019 and it included the guideline contents. Therefore, at least after the publication of the guidelines, piloti buildings, designed by the standard and guidelines, can be expected to possess better seismic performance than existing piloti buildings. To confirm this, the probability of exceedance for several damage state thresholds was estimated for existing and designed piloti buildings. As a result, the probability of damage of designed piloti buildings was very low compared to existing ones. Consequently, it was confirmed that the guideline and standard adequately supplement the structural fragility of existing piloti buildings.

Improvement of Spectral Displacement-Based Damage State Criteria of Existing Low-Rise, Piloti-Type Buildings (기존 저층 필로티 건물의 스펙트럼 변위 기반 손상도 기준 개선)

  • Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.201-211
    • /
    • 2021
  • The Ministry of the Interior and Safety in Korea developed seismic fragility function for various building types in 2009. Damage states for most building types were determined by structural analyses of sample models and foreign references because actual cases damaged by earthquakes rarely exist in Korea. Low-rise, piloti-type buildings showed severe damage by brittle failure in columns due to insufficient stirrup details in the 2017 Pohang earthquake. Therefore, it is necessary to improve damage state criteria for piloti-type buildings by consulting actual outcomes from the earthquake. An analytical approach was conducted by developing analysis models of sample buildings reflecting insufficient stirrup details of columns to accomplish the purpose. The result showed that current spectral displacements of damage states for piloti-type buildings might be too large to estimate actual fragility. When the brittle behavior observed in the earthquake is reflected in the analysis model, one-fourth through one-sixth of current spectral displacements of damage states may be appropriate for existing low-rise, piloti-type buildings.

Seismic Performance of Low-rise Piloti RC Buildings with Concentric Core (중심코어를 가지는 저층 철근콘크리트 필로티 건물의 내진성능)

  • Yoon, Tae-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.611-619
    • /
    • 2022
  • In this study, the seismic performance of low - rise piloti buildings with concentric core (shear wall) position is analysed and reviewed based on KDS 41. The prototype is selected among the constructed low - rise piloti buildings with concentric core designed based on KBC 2005 which was used for many low - rise piloti buildings construction. The seismic performance of the building shows plastic behavior in X-direction and elastic behavior in Y-direction. The inter-story drift is lager than that of concentric core case and is under the maximum allowed drift ratio. The displacement ratio of first story is much lager the that of upper stories, and the frame structure in the first story is evaluated as vulnerable to lateral force. Therefore, low - rise piloti buildings with concentric core need the diminishment of lateral displacement and reinforcement of lateral resistance capacity in seismic design and seismic retrofit.

Seismic Behavior of Domestic Piloti-type Buildings Damaged by 2017 Pohang Earthquake (2017년 포항지진으로 피해를 입은 국내 필로티형 건물의 지진 거동)

  • Kim, Taewan;Chu, Yurim;Kim, Seung Re;Bhandari, Diwas
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.161-168
    • /
    • 2018
  • Pohang earthquake occurred on November 15, 2017, with a magnitude of 5.4. The damage of the structure caused by the Pohang earthquake was the most significant in 4-story piloti-type buildings, where the damage patterns were different according to the location of columns and walls at the first story. One building with a staircase at a corner shows shear failure at columns, and Another building with a staircase in the middle shows no failure or shear failure at staircase walls. Therefore, two different piloti-type buildings were selected; one has a staircase at a corner and another has in the middle, and the seismic behavior of the buildings were examined by nonlinear dynamic analysis applying a ground motion measured at Pohang. Analytical model well simulated the actual behavior of the piloti-type buildings during the earthquake. Analysis results showed that walls have an insufficient shear strength wherever the location of the staircase is and columns with insufficient transverse reinforcement could be failed when the staircase is located at a corner. Conclusively, structural engineers should design columns and walls in piloti-type buildings to possess sufficient capacity according to the location of staircase.

Study on the Seismic Performance for Low-rised RC Building with Vertical and Torsional Irregularities (수직비정형과 비틀림비정형을 동시에 가지는 저층 RC 건물의 내진성능에 관한 연구)

  • Choi, In-Hyuk;Baek, Eun-Rim;Lee, Sang-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.12
    • /
    • pp.137-148
    • /
    • 2019
  • Korean piloti-type buildings are comprised of pilotis in the first story and shear walls in the upper stories. This vertical irregularity causes excessive lateral plastic deformation on the first story while the upper stories stay elastic. Meanwhile, asymmetric position of structural components such as core walls and columns of RC piloti-type buildings tends to produce torsional irregularities of the structures. Korean Building Code(KBC2016) requires the special seismic load and torsional amplification factor to apply to the piloti-type buildings lower than six-story or 20m if it has vertical and torsional irregularities when the building corresponds to seismic design category C or D. Many Korean low-rised RC buildings fall into the class. Therefore, the special earthquake load and torsional amplification factor are often applied to a building simultaneously. However, it has not been studied enough how much influence each parameter has on buildings with vertical and torsional irregularities at the same time. The purpose of this study is to evaluate the effect of factor special seismic load and torsional amplification on seismic performance of irregular buildings. In this study, a damaged 4th story piloti-type building by the Pohang earthquake was selected and the earthquake response analysis was carried out with various seismic design methods by the KBC 2016. The effect of the design parameters on seismic performance was analyzed by the dynamic analysis of models with special seismic load and torsional amplification factor based on the selected building. It was concluded that the application of the torsional amplification factor to the reference model to which special seismic design was applied, does not significantly affect the seismic performance.

Fragility Assessment of Damaged Piloti-Type RC Building With/Without BRB Under Successive Earthquakes (연속 지진에 의하여 손상된 필로티 RC 건축물의 BRB 보강 전/후의 취약성 평가)

  • Shin, Jiuk;Kim, JunHee;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.133-141
    • /
    • 2013
  • This paper presents the seismic evaluation and prediction of a damaged piloti-type Reinforced Concrete (RC) building before and after post-retrofitting under successive earthquakes. For considering realistic successive earthquakes, the past records measured at the same station were combined. In this study, the damaged RC building due to the first earthquake was retrofitted with a buckling-restrained brace (BRB) before the second earthquake occurred. Nonlinear Time History Analysis (NTHA) was performed under the scaled intensity of the successive ground motions. Based on the extensive structural response data obtained form from the NTHA, the fragility relationships between the ground shaking intensity and the probability of reaching a pre-determined limit state was were derived. In addition, The the fragility curves of the pre-damaged building without and with the BRBs were employed to evaluate the effect of the successive earthquakes and the post-retrofit effect. Through the seismic assessment subjected to the successive records, it was observed that the seismic performance of the pre-damaged building was significantly affected by the severity of the damage from the first earthquake damages and the hysteresis behavior of the retrofit element.

Seismic Performance of an Existing Low-Rise Reinforced Concrete Piloti Building Retrofitted by Steel Rod Damper (강봉댐퍼로 보강한 기존 저층 철근콘크리트 필로티 건물의 내진성능)

  • Baek, Eun Lim;Oh, Sang Hoon;Lee, Sang Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.241-251
    • /
    • 2014
  • In this study, shaking table test was carried out to evaluate the seismic behavior and performance of low-rise reinforced concrete (RC) piloti structures with and without retrofit. The specimens were designed considering the characteristics of existing building with pilotis such as natural period, distribution factor of strength and stiffness between columns and core wall on the first soft story. The test for the non-retrofit specimen showed that damage was concentrated on the stiffer member on the same floor as the core wall failed by shear fracture whereas columns experienced slight flexural cracks. Considering the failure mode of the non-retrofit specimen, the retrofit method using steel rod damper was presented for improving the seismic performance of piloti structures. The results of the test for retrofit specimen revealed that the retrofit method was effective for controlling the damage as the main RC structural members were not destroyed and most of input energy was dissipated by hysteretic behavior of the damper.

Analytical Study on the Seismic Retrofit Method of Irregular Piloti Building Using Knee-Brace (Knee - Brace를 활용한 비정형 필로티 건물의 내진보강방안에 대한 해석적 연구)

  • Yoo, Suk-Hyung;Kim, Dal-Gee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2020
  • Torsional behavior due to the plane irregularities of the piloti building can cause excessive story drift in the torsionally outermost column, which can lead to shear failure of the column. As a seismic retrofit method that can control the torsional behavior of the piloti building, the expansion of RC wall, steel frame or steel brace may be used, but such methods may hinder the openness of the piloti floor. Therefore, in this study, linear dynamic analysis and nonlinear static analysis for piloti buildings retrofitted by knee brace were performed, and seismic performance evaluation and torsion control effect of knee brace were analyzed. The results showed that the shear force of the column increased when the piloti building retrofitted by knee brace, but it was effective in controlling the torsional deformation. In case of retrofit between knee brace and column by 30°, the shear force of the column increased less than that of 60°, and the lateral displacement of column was decreased in the order of □, ◯ and H in cross-section.

Non-linear Time History Analysis of Piloti-Type High-rise RC Buildings (필로티형 고층 RC건물의 비선형시간이력해석)

  • Ko, Dong-Woo;Lee, Han-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.35-43
    • /
    • 2009
  • Two types of piloti-type high-rise RC building structures having irregularity in the lower two stories were selected as prototypes, and nonlinear time history analysis was performed using OpenSees to verify the analysis technique and to investigate the seismic capacity of those buildings. One of the buildings studied had a symmetrical moment-resisting frame (BF), while the other had an infilled shear wall in only one of the exterior frames (ESW). A fiber model, consisting of concrete and reinforcing bar represented from the stress-strain relationship, was adapted and used to simulate the nonlinearity of members, and MVLEM (Multi Vertical Linear Element Model) was used to simulate the behavior of the wall. The analytical results simulate the behavior of piloti-type high-rise RC building structures well, including the stiffness and yield force of piloti stories, the rocking behavior of the upper structure and the variation of the axial stiffness of the column due to variation in loading condition. However, MVLEM has a limitation in simulating the abrupt increasing lateral stiffness of a wall, due to the torsional mode behavior of the building. The design force obtained from a nonlinear time history analysis was shown to be about $20{\sim}30%$ smaller than that obtained in the experiment. For this reason, further research is required to match the analytical results with real structures, in order to use nonlinear time history analysis in designing a piloti-type high-rise RC building.

Dynamic Analysis of RC Piloti-Type Building Subjected to Earthquake Loads (지진하중이 작용하는 RC 필로티 건축물의 동적해석)

  • Kim, Ju-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.121-128
    • /
    • 2021
  • Piloti-type buildings in Korea are usually composed of lower frames and upper shear wall structures. Piloti-type buildings have been seriously damaged during earthquakes because of the construction of soft and weak stories. Piloti-type buildings with edge cores are two-way unsymmetric planes. This paper analyzed and obtained the dynamic response for structures modeled using a multistory two-way asymmetric system. The numerical results, obtained using the Newmark-β method, show the time-history responses and trends of maximum displacements and shear forces. The purpose of this study is to evaluate the effect of reinforcement on dynamic response when a shear wall or brace is reinforced in the corner opposite the piloti.